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Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian) random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.







Recap: Crown Jewel of Normal Distribution

Central Limit Theorem
For any set of independent identically distributed (i.i.d.) random
variables Xi , define Tn = ∑Xi to be the “total sum” as a function of n.

(and we can define An = 1
n ∑Xi to be the “running average.”)

Suppose the Xi ’s have expectation µ = E(Xi) and variance σ2.

Then the Expectation of Tn is nµ, and its variance is nσ2.

Interesting question: What happens to the distribution of Tn as n
gets large?

Note: We are asking this for any arbitrary original distribution Xi !
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Review: Central Limit Theorem

Central Limit Theorem

Let X1,X2, . . . be i.i.d. with E [X1] = µ and var(X1) = σ2. Define

Sn :=
Tn−nµ

σ
√

n
=

X1 + · · ·+Xn−nµ

σ
√

n
.

E(Sn) =
1

σ
√

n
(E(Tn)−nµ) = 0

Var(Sn) =
1

σ2n
Var(Tn) = 1.

Then,
Sn→N (0,1),as n→ ∞.

That is,

Pr [Sn ≤ α]→ 1√
2π

∫
α

−∞

e−x2/2dx .
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Implications of CLT 

0 The Distributions of Sn and Tn wipe out all the information 

in the original information except forµ and u2. 

0 If there are large number of small and independent factors, 

the aggregate of these factors will be normally distributed. 

E.g. Noise. 

O The Gaussian Distribution is very important - many problems 

involve sums of iid random variables and the only thing one 

needs to know is the mean and variance. 







Inequalities: An Overview
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Andrey Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication. The Church complied
with his request.
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Markov’s inequality (General Form)

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f : ℜ→ [0,∞) is nondecreasing. Then,

Pr [X ≥ a]≤ E [f (X )]

f (a)
, for all a such that f (a)> 0.

Proof:

Observe that
1{X ≥ a} ≤ f (X )

f (a)
.

Indeed, if X < a, the inequality reads 0≤ f (X )/f (a), which holds
since f (·)≥ 0. Also, if X ≥ a, it reads 1≤ f (X )/f (a), which holds since
f (·) is nondecreasing.

Taking the expectation yields the inequality, because expectation is
monotone.
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the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f : ℜ→ [0,∞) is nondecreasing. Then,

Pr [X ≥ a]≤ E [f (X )]

f (a)
, for all a such that f (a)> 0.

Proof:

Observe that
1{X ≥ a} ≤ f (X )

f (a)
.

Indeed, if X < a, the inequality reads 0≤ f (X )/f (a), which holds
since f (·)≥ 0. Also, if X ≥ a, it reads 1≤ f (X )/f (a), which holds since
f (·) is nondecreasing.

Taking the expectation yields the inequality, because expectation is
monotone.



A picture



Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

Pr [|X −E [X ]|> a]≤ var [X ]

a2 , for all a > 0.

Proof: Let Y = |X −E [X ]| and f (y) = y2. Then,

Pr [Y ≥ a]≤ E [f (Y )]

f (a)
=

var [X ]

a2 .

This result confirms that the variance measures the “deviations
from the mean.”
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Fraction of H ’s
Here is a classical application of Chebyshev’s inequality.

How likely is it that the fraction of H ’s differs from 50%?

Let Xm = 1 if the m-th flip of a fair coin is H and Xm = 0
otherwise.

Define
Mn =

X1 + · · ·+Xn

n
, for n ≥ 1.

We want to estimate

Pr [|Mn−0.5| ≥ 0.1] = Pr [Mn ≤ 0.4 or Mn ≥ 0.6].

By Chebyshev,

Pr [|Mn−0.5| ≥ 0.1]≤ var [Mn]
(0.1)2 = 100var [Mn].

Now,

var [Mn] =
1
n2 (var [X1]+ · · ·+var [Xn]) =

1
n var [X1]≤ 1

4n .

Var(Xi) = p(1− lp)≤ (.5)(.5) = 1
4
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Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0,

as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞,

the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Fraction of H ’s

Mn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Mn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Mn−0.5| ≤ ε]→ 1.

This is an example of the (Weak) Law of Large Numbers.

We will address WLLN next time.



Summary

Inequalities: Markov and Chebyshev

1. Inequalities: Markov and Chebyshev Tail Bounds
2. Confidence Intervals: Chebyshev Bounds


