CS70: Lecture 34.

Linear Regression (LR) ‘

. Motivation for Linear Regression (LR)
. Minimum Mean Squared Error: Discussion
. Covariance: Definition and Properties

. Linear Regression (LR): Non-Bayesian vs. Bayesian
(LLSE)

5. Derivation and lllustration
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Linear Regression: Motivation

Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, forn=1,...,100:

Fitted Line
Weight kg = - 114.3 +{106.5 Height M

Weight kg

13 14 15 16 17
Height M

The blue lineis Y = —114.3+106.5X. (X in meters, Y in kg.)
Best linear fit: Linear Regression.

Motivation

Example 2: 15 people.
We look at two attributes: (X, Y,) of person n, forn=1,...,15:

The line Y = a+ bX is the linear regression.

Linear Regression: Discussion

If we want to guess the value of a random variable Y, and know
nothing more than its distributon, what’s our best guess?

Depends on how we measure the ‘goodness’ of our guess.

Say we use the expected squared error between Y and our guess
as the “error” measure. Then? Answer is: E[Y].

More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let ¥:= Y —E[Y]. Then, E[¥] =0. So, E[Vc] = 0,Vc. Now,

El(Y-a?] = E[(Y-E[Y]+E[Y]-a)]
= E[(Y+c)?|withc=E[Y]-a
= E[V2+2Vc+c?) = E[V?]+2E[Vc]+c?
= E[V?+0+c2>E[V?.

Hence, E[(Y — a)2] > E[(Y — E[Y])?],Va. 0

Linear Regression: Discussion

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
Idea: use a function g(X) of the observation to estimate Y.
The simplest g(X) is a constant that does not depend on X.
The next simplest function is linear: g(X) = a+ bX.

What is the best linear function? That is our next topic.

(We can also consider a general function g(X). Any guess on
what is the best function to use? Answer: E[Y|X].)

Covariance

Definition The covariance of X and Y is

cov(X, Y) := E[(X — E[X])(Y — E[Y])].

Fact
cov(X, Y) = E[XY] — E[X]E[Y].

Proof:

E[(X — EIX])(Y — E[Y])] = E[XY — E[X]Y — XE[Y]+ E[X|E[Y]]
= E[XY] - E[X]E[Y] - E[X]E[Y]+ E[X]E[Y]
= E[XY] - E[X]E[Y].




Examples of Covariance

Four equally likely pairs of values
Y Y ¥
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cov(X,Y) =1/2 cov(X,Y)=-1/2 cov(X.Y) =10

Note that E[X] =0 and E[Y] =0 in these examples. Then
cov(X,Y)=E[XY].

When cov(X,Y) >0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X,Y) <0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X,Y) =0, we say that X and Y are uncorrelated.

Examples of Covariance
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E[X]=1x0.15+2x0.4+3x045=1.9
E[X?]=12x0.15+2%x0.4+32x0.45=5.8
E[Y]=1x02+2x06+3x02=2
E[XY]=1%0.05+1x2x0.1+-+8x3x02=485
cov(X,Y) = E[XY] - E[X]E[Y]=1.05

var[X] = E[X?] - E[X]? = 2.19.

Properties of Covariance
cov(X,Y) = E[(X — EIX])(Y — E[Y])] = E[XY]— E[X]E[Y].

Fact
(a) var[X] = cov(X,X)
(b) X, Y independent = cov(X,Y) =0
(c) cov(a+X,b+Y)=cov(X,Y)
(d) cov(aX+bY,cU+dV) = ac.cov(X,U)+ad.cov(X, V)
+bc.cov(Y,U)+bd.cov(Y,V).
Proof:
Prove (a),(b),(c) yourself to check your understanding.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,
cov(aX+bY,cU+dV)=E[(aX+bY)(cU+dV)]
= ac.E[XU] +ad.E[XV]+bc.E[YU] + bd.E[YV]
= ac.cov(X,U)+ad.cov(X, V) +bc.cov(Y,U)+bd.cov(Y,V).

]

Linear Regression: Non-Bayesian

Definition
Given the samples {(Xp, Yn),n=1,...,N}, the Linear
Regression of Y over X is

Y=a+bX

where (a, b) minimize

N
Y (Yn—a—bXn)2.

n=1

Thus, ¥, = a+bXj is our guess about Y, given X,. The
squared error is (Y, — Y,,)2. The LR minimizes the sum of the
squared errors.

Note: This is a non-Bayesian formulation: there is no prior.

Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution

Pr[X = x,Y =y], the Linear Least Squares Estimate of Y given
Xis

Y=a+bX=:L[Y|X]
where (a, b) minimize
9(a,b) := E[(Y —a—bX)?3].

Thus, ¥ = a+ bX is our guess about Y given X. The squared
error is (Y — Y)2. The LLSE minimizes the expected value of
the squared error.

Note: This is a Bayesian formulation: there is a prior.

Linear Regression: Example

Example 1: 100 people.
Let (X, Yn) = (height, weight) of person n, for n=1,...,100:

Fitted Lin
Weight kg = - 114.3 +{106.5 Height M

Height M

The blue lineis Y = —-114.3+106.5X. (X in meters, Y in kg.) Best
linear fit: Linear Regression.




LR: Non-Bayesian or Uniform?

Observe that

1

N (Yn—a—bXp)? = E[(Y —a— bX)?]

M=

n=1

where one assumes that
(X,Y) = (Xn, Yn), W.p. 1Nforn: 1,..,N.

That is, the non-Bayesian LR is equivalent to the Bayesian
LLSE that assumes that (X, Y) is uniform on the set of
observed samples.

Thus, we can study the two cases LR and LLSE in one shot.
However, the interpretations are different!

LLSE

Theorem
Consider two RVs X, Y with a given distribution
Pr[X=x,Y =y]. Then, Xy

LYIX] = ¥ = E[v]+ 2% 1) B,
Proof 1: var(X)

Y= ¥ = (Y- E[Y]) - 457 (X — E[X]). Hence, £[Y V] 0.

Also, E[(Y — V)X] = 0. after a bit of algebra. (See next slide.)

Hence, by combining the two brown equalities,
E[(Y—Y)(c+dX)]=0. Then, E[(Y — ¥)(Y —a—bX)] =0,Va,b.
Indeed: ¥ = a+ BX for some a, B, so that ¥ —a— bX = ¢+ dX for
some ¢, d. Now,
E[(Y—a—bX)?]|=E[(Y- Y+ V—a—bX)]
= E[(Y - V)| +E[(Y-a—bX)?]+0> E[(Y- V)2

This shows that E[(Y — ¥)2] < E[(Y — a— bX)?], for all (a, b).
Thus ¥ is the LLSE.

A Bit of Algebra
Y=V = (Y- E[V]) - SAGR (X - EIX).
Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] =0.
Note that

El(Y - V)X] = E[(Y - V)(X-E[X])],
because E[(Y — Y)E[X]] = 0.
Now,

E[(Y - V)(X - E[X])]

= E(Y ~ EY)(X -~ ELX))] - s VX - Ep) X - ELXD)
=0 cov(X,Y) - %)[()’(r)var[X] =0. O

() Recall that cov(X, Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].

LR: lllustration

1 cou(X.Y)
slope = Xl

Note that
» the LR line goes through (E[X], E[Y])
cov(X.Y)

> its slope is <7775

Summary

Linear Regression

1. Covariance: cov(X,Y) := E[(X— E[X])(Y — E[Y])].

2. Linear Regression: L[Y|X] = E[Y]+ C‘,’/;%()’(‘)/)(X— E[X])
3. Non-Bayesian: minimize ¥.,( Y, —a— bXy)?

4. Bayesian: minimize E[(Y — a— bX)?]




