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Regression (contd.): Linear and Beyond

Review: Linear Regression (LR), LLSE

LR: Examples

Beyond LR: Quadratic Regression
Conditional Expectation (CE) and properties

Non-linear Regression: CE = Minimum Mean-Squared
Error (MMSE)



Review: Linear Regression — Motivation

Example: 100 people.
Let (Xn, Yn) = (height, weight) of person n, for n=1,...,100:
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The blue lineis Y = —-114.3+106.5X. (X in meters, Y in kg.) Best
linear fit: Linear Regression.



Review: Covariance
Definition

The covariance of X and Y is
cov(X,Y):= E[(X—E[X])(Y — E[Y])]

Fact
cov(X,Y) = E[XY]— E[X]E[Y].



Review: Examples of Covariance

Four equally likely pairs of values
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Note that E[X] =0 and E[Y] =0 in these examples. Then

cov(X,Y) = E[XY].

When cov(X,Y) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X, Y) <0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X,Y) =0, we say that X and Y are uncorrelated.



Review: Linear Regression — Non-Bayesian

Definition
Given the samples {(Xp, Yn),n=1,...,N}, the Linear
Regression of Y over X is

A

Y=a+bX

where (&, b) minimize

N
Y (Ya—a—bXy)%

n=1

Thus, Y, = a+ bX, is our guess about Y, given X,. The
squared erroris (Y, — \A/,,)z. The LR minimizes the sum of the
squared errors. Note: This is a non-Bayesian formulation: there
iS no prior.



Review: Linear Least Squares Estimate (LLSE)

Definition
Given two RVs X and Y with known distribution
Pr[X = x,Y = y], the Linear Least Squares Estimate of Y given
Xis .
Y =a+bX=:L[Y|X]
where (&, b) minimize
g(a,b) = E[(Y —a—bX)?].

Thus, Y = a+ bXis our guess about Y given X. The squared
error is (Y — Y)2. The LLSE minimizes the expected value of
the squared error. Note: This is a Bayesian formulation: there is
a prior.



Review: LR: Non-Bayesian or Uniform?

Observe that

L ﬁ(yn—a—bx,,)2 = E[(Y —a—bX)?]
n=1

Z|

where one assumes that

(X,Y)=(Xn, Yn), W.p. 1N forn=1,....N.
That is, the non-Bayesian LR is equivalent to the Bayesian
LLSE that assumes that (X, Y) is uniform on the set of
observed samples.
Thus, we can study the two cases LR and LLSE in one shot.
However, the interpretations are different!



Review: LLSE

Theorem
Consider two RVs X, Y with a given distribution
Pr[X=x,Y =y]. Then,
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Review: LLSE

Theorem
Consider two RVs X, Y with a given distribution
Pr[X=x,Y =y]. Then,

LIYIX] = ¥ = E[y]+ 224X Y)

a0 X EXD.
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Cov(X,Y) = E[XY]—E[X]E[Y]



Review: LLSE

Theorem
Consider two RVs X, Y with a given distribution
Pr[X=x,Y =y]. Then,

LIYIX] = ¥V = E[y]+ /X Y)

var(X)

(X = E[X]).
Non-Bayesian setting:
1 1
E[X]:Nn;Xn; E[Y]:Nn;1 &
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Var[X] = E[X?] - (E[X])* =

n

Cov(X,Y) = E[XY]—E[X]E[Y] :1N Z (XnYn)— 1N ﬁl: Xo)( ﬁl: Yo)

n=1
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LR: lllustration

R ‘ _ eov(X,Y
thpE — var[X]

Note that
» the LR line goes through (E[X], E[Y])
> its slope is 24XV
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Linear Regression: Examples
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We find:

E[X]=0;E[Y]=0;E[X?] =1/2,E[XY]=1/2;
var[X] = E[X?] - E[X]? = 1/2;cov(X,Y) = E[XY] - E[X]E[Y] =1/2;
cov(X,Y)

LR: ¥ = E[Y]+ v

(X — E[X]) = X.
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L

We find:

E[X] = 0; E[Y] = 0; E[X?] =1/2; E[XY] = —1/2;
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Linear Regression: Example 3

L

We find:

E[X] = 0; E[Y] = 0; E[X?] =1/2; E[XY] = —1/2;
var[X] = E[X?] — E[X]? = 1/2;cov(X, Y) = E[XY] — E[X]E[Y] = —1/2;
cov(X,Y)

LR: ¥ = E[Y] + var(X]

(X - E[X]) = —X.
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Estimation Error

We saw that the LLSE of Y given X is

cov(X Y)
var(X)

How good is this estimator? That is, what is the mean squared
estimation error?

We find

E[|Y - L[Y|X]|?] = E[(Y — E[Y] - (cov(X, Y)/var(X))(X — E[X]))?]
= E[(Y — E[Y])?]—2(cov(X, Y)/var(X))E[(Y — E[Y])(X — E[X])]
+(cov(X,Y)/var(X))2E[(X — E[X])?
cov(X,Y)?
var(X)

L[Y|X]= VY =E[Y]+ (X — E[X]).

=var(Y)-

Without observations, the estimate is E[Y] = 0. The error is var(Y).
Observing X reduces the error.



Wrap-up of Linear Regression

Linear Regression




Wrap-up of Linear Regression

’ Linear Regression ‘

1. Linear Regression: L[Y|X] = E[Y]+C°V (X - E[X])

var(X)




Wrap-up of Linear Regression

’ Linear Regression ‘

1. Linear Regression: L[Y|X] = E[Y]+C°V (X - E[X])

var(X)

2. Non-Bayesian: minimize Z,,(Yn—a—bXn)



Wrap-up of Linear Regression

| Linear Regression |

1. Linear Regression: L[Y|X] = E[Y]+C°V (X - E[X])

var(X)

2. Non-Bayesian: minimize Z,,(Yn—a—bXn)
3. Bayesian: minimize E[(Y —a— bX)?]
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Beyond Linear Regression: Discussion

Goal: guess the value of Y in the expected squared error
sense. We know nothing about Y other than its distribution.
Our best guess is? E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
ldea: use a function g(X) of the observation to estimate Y.

LR: Restriction to linear functions: g(X) = a+ bX.

With no such constraints, what is the best g(X)?

Answer: E[Y|X].

This is called the Conditional Expectation (CE).
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Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).
. Y Bettey estimate

LY |X] v
v

Our goal: explore estimates ¥ = g(X) for nonlinear functions g(.).
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