
CS70: Lecture 35.

Regression (contd.): Linear and Beyond

1. Review: Linear Regression (LR), LLSE
2. LR: Examples
3. Beyond LR: Quadratic Regression
4. Conditional Expectation (CE) and properties
5. Non-linear Regression: CE = Minimum Mean-Squared

Error (MMSE)



CS70: Lecture 35.

Regression (contd.): Linear and Beyond

1. Review: Linear Regression (LR), LLSE
2. LR: Examples
3. Beyond LR: Quadratic Regression
4. Conditional Expectation (CE) and properties
5. Non-linear Regression: CE = Minimum Mean-Squared

Error (MMSE)



Review: Linear Regression – Motivation

Example: 100 people.
Let (Xn,Yn) = (height, weight) of person n, for n = 1, . . . ,100:

E[Y ]

Y

X

The blue line is Y =−114.3 + 106.5X . (X in meters, Y in kg.) Best
linear fit: Linear Regression.



Review: Covariance
Definition

The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].



Review: Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].
When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.
When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.
When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Review: Linear Regression – Non-Bayesian

Definition
Given the samples {(Xn,Yn),n = 1, . . . ,N}, the Linear
Regression of Y over X is

Ŷ = a + bX

where (a,b) minimize

N

∑
n=1

(Yn−a−bXn)2.

Thus, Ŷn = a + bXn is our guess about Yn given Xn. The
squared error is (Yn− Ŷn)2. The LR minimizes the sum of the
squared errors. Note: This is a non-Bayesian formulation: there
is no prior.



Review: Linear Least Squares Estimate (LLSE)

Definition
Given two RVs X and Y with known distribution
Pr [X = x ,Y = y ], the Linear Least Squares Estimate of Y given
X is

Ŷ = a + bX =: L[Y |X ]

where (a,b) minimize

g(a,b) := E [(Y −a−bX )2].

Thus, Ŷ = a + bX is our guess about Y given X . The squared
error is (Y − Ŷ )2. The LLSE minimizes the expected value of
the squared error. Note: This is a Bayesian formulation: there is
a prior.



Review: LR: Non-Bayesian or Uniform?

Observe that

1
N

N

∑
n=1

(Yn−a−bXn)2 = E [(Y −a−bX )2]

where one assumes that

(X ,Y ) = (Xn,Yn), w.p.
1
N

for n = 1, . . . ,N.

That is, the non-Bayesian LR is equivalent to the Bayesian
LLSE that assumes that (X ,Y ) is uniform on the set of
observed samples.
Thus, we can study the two cases LR and LLSE in one shot.
However, the interpretations are different!



Review: LLSE

Theorem
Consider two RVs X ,Y with a given distribution
Pr [X = x ,Y = y ]. Then,

L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Non-Bayesian setting:

E [X ] =
1
N

N

∑
n=1

Xn; E [Y ] =
1
N

N

∑
n=1

Yn

Var [X ] = E [X 2]− (E [X ])2 =
1
N

N

∑
n=1

(Xn)2− (
1
N

N

∑
n=1

(Xn))2

Cov(X ,Y ) = E [XY ]−E [X ]E [Y ] =
1
N

N

∑
n=1

(XnYn)−(
1
N

N

∑
n=1

Xn)(
1
N

N

∑
n=1

Yn)
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L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Non-Bayesian setting:

E [X ] =
1
N

N

∑
n=1

Xn; E [Y ] =
1
N

N

∑
n=1

Yn

Var [X ] = E [X 2]− (E [X ])2 =

1
N

N

∑
n=1

(Xn)2− (
1
N

N

∑
n=1

(Xn))2

Cov(X ,Y ) = E [XY ]−E [X ]E [Y ] =
1
N

N

∑
n=1

(XnYn)−(
1
N

N

∑
n=1

Xn)(
1
N

N

∑
n=1

Yn)



Review: LLSE

Theorem
Consider two RVs X ,Y with a given distribution
Pr [X = x ,Y = y ]. Then,

L[Y |X ] = Ŷ = E [Y ] +
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LR: Illustration

Note that

I the LR line goes through (E [X ],E [Y ])

I its slope is cov(X ,Y )
var(X) .
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Linear Regression: Examples







Linear Regression: Example 2

We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;E [XY ] = 1/2;

var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;

LR: Ŷ = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]) = X .
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LR: Ŷ = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]) = X .



Linear Regression: Example 2

We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;E [XY ] = 1/2;

var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;
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Estimation Error

We saw that the LLSE of Y given X is

L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

How good is this estimator? That is, what is the mean squared
estimation error?

We find

E [|Y −L[Y |X ]|2] = E [(Y −E [Y ]− (cov(X ,Y )/var(X ))(X −E [X ]))2]

= E [(Y −E [Y ])2]−2(cov(X ,Y )/var(X ))E [(Y −E [Y ])(X −E [X ])]

+(cov(X ,Y )/var(X ))2E [(X −E [X ])2

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ] = 0. The error is var(Y ).
Observing X reduces the error.
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Linear Regression
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2. Non-Bayesian: minimize ∑n(Yn−a−bXn)2

3. Bayesian: minimize E [(Y −a−bX )2]
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Beyond Linear Regression: Discussion

Goal: guess the value of Y in the expected squared error
sense. We know nothing about Y other than its distribution.
Our best guess is? E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y ?

Idea: use a function g(X ) of the observation to estimate Y .

LR: Restriction to linear functions: g(X ) = a + bX .

With no such constraints, what is the best g(X )?

Answer: E [Y |X ].

This is called the Conditional Expectation (CE).
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Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).

Our goal: explore estimates Ŷ = g(X ) for nonlinear functions g(·).
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Our goal: explore estimates Ŷ = g(X ) for nonlinear functions g(·).



Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).
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Quadratic Regression

Let X ,Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable

Q[Y |X ] = a + bX + cX 2

where a,b,c are chosen to minimize E [(Y −a−bX −cX 2)2].

Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E [Y −a−bX −cX 2]

0 = E [(Y −a−bX −cX 2)X ]

0 = E [(Y −a−bX −cX 2)X 2]

We solve these three equations in the three unknowns (a,b,c).
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Conditional Expectation

Definition Let X and Y be RVs on Ω.

The conditional
expectation of Y given X is defined as

E [Y |X ] = g(X )

where

g(x) := E [Y |X = x ] := ∑
y

yPr [Y = y |X = x ].
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Deja vu, all over again?

Have we seen this before?

Yes.

Is anything new? Yes.

The idea of defining g(x) = E [Y |X = x ] and then
E [Y |X ] = g(X ).

Big deal? Quite! Simple but most convenient.

Recall that L[Y |X ] = a + bX is a function of X .

This is similar: E [Y |X ] = g(X ) for some function g(·).
In general, g(X ) is not linear, i.e., not a + bX . It could be that
g(X ) = a + bX + cX 2. Or that g(X ) = 2sin(4X ) + exp{−3X}. Or
something else.
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Properties of CE

E [Y |X = x ] = ∑
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Calculating E [Y |X ]

Let X ,Y ,Z be i.i.d. with mean 0 and variance 1.

We want to
calculate

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ].

We find

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ]
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= 2 + 5X + 7XE [Y ] + 11X 2 + 13X 3E [Z 2]

= 2 + 5X + 11X 2 + 13X 3(var [Z ] + E [Z ]2)

= 2 + 5X + 11X 2 + 13X 3.
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CE = MMSE
(Conditional Expectation = Minimum Mean Squared Error)
Theorem
g(X ) := E [Y |X ] is the function of X that minimizes
E [(Y −g(X ))2].

That is, E [Y |X ] is the ‘best’ guess about Y based on X .

Specifically, it is the function g(X ) of X that

minimizes E [(Y −g(X ))2].
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Summary

Linear and Non-Linear Regression: Conditional Expectation

I Linear Regression: L[Y |X ] = E [Y ] + cov(X ,Y )
var(X) (X −E [X ])

I Non-linear Regression: MMSE: E [Y |X ] minimizes
E [(Y −g(X ))2] over all g(·)

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]
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