CS70: Lecture 36.

Markov Chains

1. Markov Process: Motivation, Definition
2. Examples
3. Invariant Distribution of Markov Chains: Balance Equations

From Random Variables to Random Processes

What is a random process?

= Probabilistic description for a sequence of Random
Variables = usually associated with time.

Example 1: No. of students in my Office Hours (OH) at time t
(5-minute intervals)

Example 2: No. of dollars in my wallet at the end of a day
Xi1/29/17 = $17

Xi1/30/17 = $7 with probability 0.5 and = $13 with probability 0.5

Example 3: No. of students enrolled in CS70:
Sept. 1: 800; Oct. 1: 850; Nov. 1: 750; Dec. 1: 737;

Random Process
In general, one can describe a random process by describing
the joint distribution of (X, Xy,,..., X;) Vi = not tractable .
Markov Process: We make the simplifying assumption:
“Given the present, the future is decoupled from the past.”

Example: Suppose you need to get to an 8 a.m. class, and you
need to take a 7:30 a.m. bus from near your house to make it
on time to class.

Pr[You get to your 8 a.m. class on time | You catch the 7:30
bus, You wake up at 6 a.m., You eat breakfast at 7 a.m.]

= Pr[You get to your 8 a.m. class on time | You catch the 7:30
bus].

This is an example of the Markov property:
P[Xn11 = Xny1|1Xn = Xn, Xn_1 = Xn_1, Xn—2 = Xn_2,.. ]

= P[Xnt1 = Xn1| Xn = Xxn]

Example: My Office Hours (OH)

» When nobody is in my OH at time n, then at time (n+1),

there will be either 1 student w.p. 0.2 or 0 student w.p. 0.8
» When 1 person is in my OH at time n, then at time (n+1),

there will be either 1 student w.p. 0.3 or 2 students w.p. 0.7
» When 2 people are in my OH at time n, then at time (n+1),

there will be either 0 student w.p. 0.6 or 1 student w.p. 0.4

Questions of interest:

1. How many students do | have in my OH on average?

2. If I start my OH at time 0, with 0 students, what is the
probability that | have 2 students in my OH at time 10?

These questions require the study of Markov Chains!
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03 06

State Transition DM%MM

_Sig"{’e Sezwme: Xo; X.,Xz/"‘ ,‘
where X, € §50,5.5% Wizl

POo) Pl)  Fl2)
P=lpao ron 42
P2,0) (2,1) Rz,

R[5l
Pl = P55

T, = [ﬂafn) 7, (1) r%(z)]

fow-vecoy

= [P(x=S2) PO=S) P(xc:%)]
T = [P(1=%) POESD PUS)]

T = [P(y,; $5)  Plpsi) Pls)]




Example: Two-State Markov Chain PageRank illustration: Five-State Markov Chain Finite Markov Chain: Definition
Here is a symmetric two-state Markov chain. It describes a At each step, the MC follows one of the outgoing arrows of the
random motion in {0,1}. Here, a is the probability that the state current state, with equal probabilities.
changes in the next step.

Let's simulate the Markov chain: Let's simulate the Markov chain: > Afinite set of states: 2" = {1,2,...,K}

THRIRE Moos € T > A probability distribution mp on 2" : mo(i) > 0, Y, 7o (i) =1

A1 “\ i, / - )u ' ) T[ Tﬂ TJ A | > Transition probabilities: P(i. ) for i,j € 2
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i }"W w l W r 1 ]a=o0a . Ml \ I “‘M “ / Pr[Xo = i] = mo(i),i € 2 (initial distribution)

i \IL WML‘&E‘— ‘J | H : H M V H | | Pr{Xos1 = Xor. - X =1l = () i € 2.

Irreducibility Finding ,: the Distribution of X, OH Ex.: Finding 7, the distribution of X,

Definition A Markov chain is irreducible if it can go from every state / n
to every state j (possibly in multiple steps). 03 gf o n
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Thus, 1y = moP, Ty = my P = myPP = myP?,.... Hence,
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Balance Equations Invariant Distribution: always exist? Balance Equations: 2-state MC example

Question: Is there some 7y such that 7, = mp, Ym? Question 1: Does a MC always have an invariant distribution?

Defn. A distr. 7 s.t. 7tm = 7o, ¥m is called an invariant distribution. Question 2: If an invariant distribution exists, is it unique? . @@ . _ [ - }
Theorem A distribution mp is invariant iff myP = mp. These equations

are called the balance equations. Answer 1: If the_numt_)er of states in the MC is finite, then the
answer to Question 1 is yes.

If 7o is invariant, the distr. of X, is the same as that of Xo. Of course, Answer 2: If the MC is finite and irreducible, then the answer P=n < [x(1),7(2)] [ ! PR ] =[z(1),7(2)]

this does not mean that nothing moves. It means that prob. flow to Question 2 is ves -

leaving state i/ = prob. flow entering state /; Vie 2°. Thatis, yes. ( +n(2)b=r(1) and n(1)a+n(2)(1 —b) = n(2)

Prob. flow out = Prob. flow in for all states in the MC. < zn(1)a=n(2)b.
0.3 0.3
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Recall, the state transition equations from earlier slide: 0 @_\0"7 @_\0'_7 0 @_\0’_7 Prob. flow leaving state 1 = Prob. flow entering state 1
. 1 .
T () = Y wm(DP(i.j),Yj € 2. ‘1\® @ ~1\® é' 0":4 O These equations are redundant! We have to add an equation:
i
0

n(1)+n(2) = 1. Then we find
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The balance equations say that ; z(j) P(j,i) = =(i). i.e., [A] [B] (] b a
Y 7()PG.i) = =()(1 = P(i.0) = n(i) }, P(i.))- "=lap aro
J# Fi Proof: (EECS 126)
Thus, (LHS=) Prlenter i] = (RHS =)Pr[leave i]. Other settings? (e.g. infinite chains, periodicity,...?) (EECS 126)
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As mincreases, my converges to a vector that does not depend on my.




