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From Random Variables to Random Processes

What is a random process?

⇒ Probabilistic description for a sequence of Random
Variables⇒ usually associated with time.

Example 1: No. of students in my Office Hours (OH) at time t
(5-minute intervals)

Example 2: No. of dollars in my wallet at the end of a day

X11/29/17 = $17

X11/30/17 = $7 with probability 0.5 and = $13 with probability 0.5

Example 3: No. of students enrolled in CS70:

Sept. 1: 800; Oct. 1: 850; Nov. 1: 750; Dec. 1: 737;
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Random Process

In general, one can describe a random process by describing
the joint distribution of (Xt1 ,Xt2 , . . . ,Xti ) ∀i ⇒

not tractable .

Markov Process: We make the simplifying assumption:

“Given the present, the future is decoupled from the past.”

Example: Suppose you need to get to an 8 a.m. class, and you
need to take a 7:30 a.m. bus from near your house to make it
on time to class.

Pr [You get to your 8 a.m. class on time | You catch the 7:30
bus, You wake up at 6 a.m., You eat breakfast at 7 a.m.]

= Pr [You get to your 8 a.m. class on time | You catch the 7:30
bus].

This is an example of the Markov property:
P[Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1,Xn−2 = xn−2, . . .]

= P[Xn+1 = xn+1|Xn = xn]
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Example: My Office Hours (OH)

I When nobody is in my OH at time n,

then at time (n+1),

there will be either 1 student w.p. 0.2 or 0 student w.p. 0.8
I When 1 person is in my OH at time n, then at time (n+1),

there will be either 1 student w.p. 0.3 or 2 students w.p. 0.7
I When 2 people are in my OH at time n, then at time (n+1),

there will be either 0 student w.p. 0.6 or 1 student w.p. 0.4

Questions of interest:

1. How many students do I have in my OH on average?

2. If I start my OH at time 0, with 0 students, what is the
probability that I have 2 students in my OH at time 10?

These questions require the study of Markov Chains!
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State Transition Diagram and Matrix





Example: Two-State Markov Chain
Here is a symmetric two-state Markov chain.

It describes a
random motion in {0,1}. Here, a is the probability that the state
changes in the next step.

Let’s simulate the Markov chain:



Example: Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a
random motion in {0,1}.

Here, a is the probability that the state
changes in the next step.

Let’s simulate the Markov chain:



Example: Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a
random motion in {0,1}. Here, a is the probability that the state
changes in the next step.

Let’s simulate the Markov chain:



Example: Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a
random motion in {0,1}. Here, a is the probability that the state
changes in the next step.

Let’s simulate the Markov chain:



Example: Two-State Markov Chain
Here is a symmetric two-state Markov chain. It describes a
random motion in {0,1}. Here, a is the probability that the state
changes in the next step.

Let’s simulate the Markov chain:



PageRank illustration: Five-State Markov Chain
At each step, the MC follows one of the outgoing arrows of the
current state, with equal probabilities.

Let’s simulate the Markov chain:
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Finite Markov Chain: Definition

i

j

k1

P (i, j)
P (i, i)

K

I A finite set of states: X = {1,2, . . . ,K}
I A probability distribution π0 on X : π0(i)≥ 0,∑i π0(i) = 1

I Transition probabilities: P(i , j) for i , j ∈X

P(i , j)≥ 0,∀i , j ; ∑j P(i , j) = 1,∀i
I {Xn,n ≥ 0} is defined so that

Pr [X0 = i] = π0(i), i ∈X (initial distribution)

Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X .
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Irreducibility

Definition A Markov chain is irreducible if it can go from every state i
to every state j (possibly in multiple steps).

Examples:
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0.4

[A] [B] [C]

0.2

1

0.2

[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j .

If you consider the graph with arrows when P(i , j)> 0, irreducible
means that there is a single connected component.
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Finding πn: the Distribution of Xn
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n
m
m + 1

Let πm(i) = Pr [Xm = i], i ∈X . Note that

Pr [Xm+1 = j] = ∑
i

Pr [Xm+1 = j ,Xm = i]

= ∑
i

Pr [Xm = i]Pr [Xm+1 = j | Xm = i]

= ∑
i

πm(i)P(i , j).
Hence,

πm+1(j) = ∑
i

πm(i)P(i , j),∀j ∈X .

With πm,πm+1 as row vectors, these identities are written as πm+1 = πmP.

Thus, π1 = π0P, π2 = π1P = π0PP = π0P2, . . . . Hence,

πn = π0Pn,n ≥ 0.
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πn = π0Pn,n ≥ 0.
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Balance Equations

Question: Is there some π0 such that πm = π0,∀m?

Defn. A distr. π0 s.t. πm = π0,∀m is called an invariant distribution.

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.

If π0 is invariant, the distr. of Xn is the same as that of X0. Of course,
this does not mean that nothing moves. It means that prob. flow
leaving state i = prob. flow entering state i ; ∀i ∈X . That is,
Prob. flow out = Prob. flow in for all states in the MC.

Recall, the state transition equations from earlier slide:

πm+1(j) = ∑
i

πm(i)P(i , j),∀j ∈X .

The balance equations say that ∑j π(j)P(j , i) = π(i). i.e.,

∑
j 6=i

π(j)P(j , i) = π(i)(1−P(i , i)) = π(i)∑
j 6=i

P(i , j).

Thus, (LHS=) Pr [enter i] = (RHS =)Pr [leave i].
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this does not mean that nothing moves. It means that prob. flow
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Invariant Distribution: always exist?
Question 1:

Does a MC always have an invariant distribution?

Question 2: If an invariant distribution exists, is it unique?

Answer 1: If the number of states in the MC is finite, then the
answer to Question 1 is yes.

Answer 2: If the MC is finite and irreducible, then the answer
to Question 2 is yes.
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Balance Equations: 2-state MC example

1 2

a

b

1 � b1 � a P =


1 � a a

b 1 � b

�

πP = π ⇔ [π(1),π(2)]
[

1−a a
b 1−b

]
= [π(1),π(2)]

⇔ π(1)(1−a)+π(2)b = π(1) and π(1)a+π(2)(1−b) = π(2)
⇔ π(1)a = π(2)b.

Prob. flow leaving state 1 = Prob. flow entering state 1

These equations are redundant! We have to add an equation:
π(1)+π(2) = 1. Then we find

π = [
b

a+b
,

a
a+b

].
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Finding πn: the Distribution of Xn
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As m increases, πm converges to a vector that does not depend on π0.
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Summary

Markov Chains

1. Random Process: sequence of Random Variables;
2. Markov Chain: Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X

3. Invariant Distribution of Markov Chain: balance equations
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