Announcements

Will provide data on past performance for test-only versus homework on piazza and in class before you have to make final decision. In the meantime, at least consider doing homework 2. Time after class. I generally keep that time available for students, so catch me.

Questions?

Stable Marriage Problem

- Small town with \(n \) boys and \(n \) girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

How should they be matched?

Count the ways..

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.

The best laid plans..

Consider the couples...
- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.
Angelina prefers Brad to Billy-Bob.
Uh...oh.

So..

Produce a pairing where there is no running off!

Definition: A pairing is disjoint set of \(n \) boy-girl pairs.

Example: A pairing \(S = \{ (Brad, Jen); (BillyBob, Angelina) \} \).

Definition: A rogue couple \(b, g^* \) for a pairing \(S \):
\(b \) and \(g^* \) prefer each other to their partners in \(S \)

Example: Brad and Angelina are a rogue couple in \(S \).

A stable pairing??

Given a set of preferences.
Is there a stable pairing?
How does one find it?

Consider a single gender version: stable roommates.

\[
\begin{array}{cccc}
A & B & C & D \\
B & C & A & D \\
C & A & B & D \\
D & A & B & C \\
\end{array}
\]

C

D

A

B
The Traditional Marriage Algorithm.

Each Day:
1. Each boy proposes to his favorite girl on his list.
2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do “better”?

Example.

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

Day 1: A, B
Day 2: C
Day 3: B
Day 4: C
Day 5: B

Termination.

Every non-terminated day a boy crossed an item off the list.

Total size of lists? \(n \) boys, \(n \) length list. \(n^2 \)

Terminates in at most \(n^2 + 1 \) steps!

It gets better every day for girls..

Improvement Lemma: It just gets better for girls.

If on day \(t \) a girl \(g \) has a boy \(b \) on a string,
any boy, \(b' \), on \(g \)'s string for any day \(t' > t \)
is at least as good as \(b \).

Proof:
- \(P(k) \sim \) “boy on \(g \)'s string is at least as good as \(b \) on day \(t + k \)”
- \(P(0) \sim \) true. Girl has \(b \) on string.
- Assume \(P(k) \). Let \(b' \) be boy on string on day \(t + k \).

On day \(t + k + 1 \), boy \(b' \) comes back.

Girl can choose \(b' \), or do better with another boy, \(b'' \)
That is, \(b \leq b' \) by induction hypothesis. And \(b'' \) is better than \(b' \) by algorithm.

\(\Rightarrow \) Girl does at least as well as with \(b \).
- \(P(k) \sim P(k + 1) \). And by principle of induction.

Pairing when done.

Lemma: Every boy is matched at end.

Proof:
If not, a boy \(b \) must have been rejected \(n \) times.
Every girl has been proposed to by \(b \),
and Improvement lemma
\(\Rightarrow \) each girl has one boy on a string.
and each boy is on at most one string.

\(n \) girls and \(n \) boys. Same number of each.

\(\Rightarrow b \) must be on some girl's string!

Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by the traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\(\Rightarrow \) \(b \) likes \(g^* \) more than \(g \).

\(\Rightarrow \) \(b' \) likes \(g \) more than \(b \).

Boy \(b \) proposes to \(g^* \) before proposing to \(g \).
So \(g^* \) rejected \(b \) (since he moved on)
By Improvement lemma, \(g^* \) likes \(b' \) better than \(b \).

Contradiction!
<table>
<thead>
<tr>
<th>Good for boys? girls?</th>
<th>TMA is optimal!</th>
<th>How about for girls?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the TMA better for boys? for girls?</td>
<td>Theorem: TMA produces a boy-optimal pairing.</td>
<td>Theorem: TMA produces girl-pessimal pairing.</td>
</tr>
<tr>
<td>Definition: A pairing is (x)-optimal if (x)'s partner is its best partner in any stable pairing.</td>
<td>Proof: Assume not: There is stable pairing where some boy does better.</td>
<td>(T) – pairing produced by TMA.</td>
</tr>
<tr>
<td>Definition: A pairing is (x)-pessimal if (x)'s partner is its worst partner in any stable pairing.</td>
<td>Let I be first day a boy (b) gets rejected by his the optimal girl (g) who he is paired with in stable pairing (S).</td>
<td>(S) – worse stable pairing for girl (g).</td>
</tr>
<tr>
<td>Definition: A pairing is boy optimal if it is (x)-optimal for all boys (x).</td>
<td>TMA: (b') - knocks (b) off of (g)'s string on day (t) (\implies g) prefers (b') to (b)</td>
<td>In (T), ((g,b)) is pair.</td>
</tr>
<tr>
<td>...and so on for boy pessimal, girl optimal, girl pessimal.</td>
<td>By choice of (t), (b') prefers (g) to his partner in (S).</td>
<td>In (S), ((g,b')) is pair.</td>
</tr>
<tr>
<td>Check: The optimal partner for a boy must be first in his preference list.</td>
<td>(\implies b') prefers (g) to his partner (g^*) in (S).</td>
<td>(g) likes (b') less than she likes (b).</td>
</tr>
<tr>
<td>True? False? False!</td>
<td>Rogue couple for (S). So (S) is not a stable pairing. Contradiction.</td>
<td>(T) is boy optimal, so (b) likes (g) more than his partner in (S).</td>
</tr>
<tr>
<td>Subtlety here: Best partner in any stable pairing. As well as you can do in a globally stable solution!</td>
<td>Notes: Not really induction. Structural statement: Boy optimality (\implies) Girl pessimal.</td>
<td></td>
</tr>
<tr>
<td>Question: Is there a boy or girl optimal pairing? Is it possible: (b)-optimal pairing different from the (b')-optimal pairing? Yes? No?</td>
<td>Used Well-Ordering principle...Induction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quick Questions.</th>
<th>Residency Matching..</th>
<th>Don't go!</th>
</tr>
</thead>
<tbody>
<tr>
<td>How does one make it better for girls?</td>
<td>The method was used to match residents to hospitals.</td>
<td>Summary.</td>
</tr>
<tr>
<td>SMA - stable marriage algorithm. One side proposes.</td>
<td>Hospital optimal... (\ldots) until 1990's...Resident optimal.</td>
<td>Summary:</td>
</tr>
<tr>
<td>TMA - boys propose. Girls could propose. (\implies) (\text{optimal for girls.})</td>
<td>Another variation: couples.</td>
<td>Don't go!</td>
</tr>
</tbody>
</table>