Today.

Types of graphs.
Types of graphs.

Complete Graphs.
Trees.
Planar Graphs.
Today.

Types of graphs.

Complete Graphs.
Trees.
Planar Graphs.
Complete Graph.

\(K_n \) complete graph on \(n \) vertices.
K_n complete graph on n vertices.
All edges are present.
Complete Graph.

\(K_n \) complete graph on \(n \) vertices.
All edges are present.
Everyone is my neighbor.
Complete Graph.

K_n complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.
Complete Graph.

K_n complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.
Complete Graph.

K_n complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Complete Graph.

K_n complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to $n - 1$ edges.
Complete Graph.

K_n complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to $n-1$ edges.
Sum of degrees is $n(n-1)$.
Complete Graph.

\(K_n \) complete graph on \(n \) vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to \(n - 1 \) edges.
Sum of degrees is \(n(n - 1) \).
\[\Rightarrow \text{Number of edges is } \frac{n(n - 1)}{2}. \]
Complete Graph.

K_n complete graph on n vertices.
- All edges are present.
- Everyone is my neighbor.
- Each vertex is adjacent to every other vertex.

How many edges?
- Each vertex is incident to $n-1$ edges.
- Sum of degrees is $n(n-1)$.
 \[\sum \text{deg} = n(n-1) \]
 \[\implies \text{Number of edges is } n(n-1)/2. \]
- Remember sum of degree is $2|E|$.

K_5 is not planar.
K_5 is not planar.
Cannot be drawn in the plane without an edge crossing!
K_5 is not planar.
Cannot be drawn in the plane without an edge crossing!
Prove it!
K_5 is not planar.
Cannot be drawn in the plane without an edge crossing!
Prove it! We will!
A Tree, a tree.

Graph $G = (V, E)$.
Binary Tree!

More generally.
Trees.

Definitions:

A connected graph without a cycle.

A connected graph with $|V| - 1$ edges.

A connected graph where any edge removal disconnects it.

A connected graph where any edge addition creates a cycle.

Some trees with no cycle and connected?

Yes.

$|V| - 1$ edges and connected?

Yes.

Removing any edge disconnects it.

Harder to check. But yes.

Adding any edge creates a cycle.

Harder to check. But yes.

To tree or not to tree!
Trees.

Definitions:

A connected graph without a cycle.
Trees.

Definitions:
- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees. Are they connected and have no cycle? Yes. Are they connected and have $|V| - 1$ edges? Yes. Is it harder to check if removing any edge disconnects it? Yes. Is it harder to check if adding any edge creates a cycle? Yes. To tree or not to tree!
Trees.

Definitions:
- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected?
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.

$|V| - 1$ edges and connected?
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

- No cycle and connected? Yes.
- $|V| - 1$ edges and connected? Yes.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
$|V| - 1$ edges and connected? Yes.
removing any edge disconnects it.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
$|V| - 1$ edges and connected? Yes.
removing any edge disconnects it. Harder to check.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>No cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with \(|V| − 1\) edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

![Diagram of trees](image)

- no cycle and connected? Yes.
- \(|V| − 1\) edges and connected? Yes.
- removing any edge disconnects it. Harder to check. but yes.
- Adding any edge creates cycle.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

- No cycle and connected? Yes.
- $|V| - 1$ edges and connected? Yes.
- Removing any edge disconnects it. Harder to check. But yes.
- Adding any edge creates cycle. Harder to check.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
$|V| - 1$ edges and connected? Yes.
removing any edge disconnects it. Harder to check. but yes.
Adding any edge creates cycle. Harder to check. but yes.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

- [Diagram of a tree with no cycle and connected.]
- [Diagram of a tree with $|V| - 1$ edges and connected.]
- [Diagram of a tree where removing any edge disconnects it.]
- [Diagram of a tree where adding any edge creates a cycle.]

- no cycle and connected? Yes.
- $|V| - 1$ edges and connected? Yes.
- removing any edge disconnects it. Harder to check. but yes.
- Adding any edge creates cycle. Harder to check. but yes.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
$|V| - 1$ edges and connected? Yes.
removing any edge disconnects it. Harder to check. but yes.
Adding any edge creates cycle. Harder to check. but yes.

To tree or not to tree!
Theorem:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”
Equivalence of Definitions.

Theorem:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Lemma: If v is degree 1 in connected G, then $G - v$ is connected.

Proof:
For $x \neq v, y \neq v \in V$,
Theorem:
“\(G\) connected and has \(|V| - 1\) edges” \(\equiv\)
“\(G\) is connected and has no cycles.”

Lemma: If \(v\) is degree 1 in connected \(G\), then \(G - v\) is connected.

Proof:
For \(x \neq v, y \neq v \in V\),
there is path between \(x\) and \(y\) in \(G\) since connected.
Equivalence of Definitions.

Theorem:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Lemma: If v is degree 1 in connected G, then $G - v$ is connected.

Proof:
For $x \neq v, y \neq v \in V$,
there is path between x and y in G since connected.
and does not use v (degree 1)
Equivalence of Definitions.

Theorem:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Lemma: If v is degree 1 in connected G, then $G - v$ is connected.

Proof:
For $x \neq v, y \neq v \in V$,
there is path between x and y in G since connected.
and does not use v (degree 1)
$\implies G - v$ is connected.
Theorem:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Lemma: If v is degree 1 in connected G, then $G - v$ is connected.

Proof:
For $x \neq v, y \neq v \in V$,
there is path between x and y in G since connected.
and does not use v (degree 1)
\implies $G - v$ is connected.
Equivalence of Definitions.

Theorem:
“G connected and has $|V| - 1$ edges” ≡
“G is connected and has no cycles.”

Lemma: If v is degree 1 in connected G, then $G - v$ is connected.

Proof:
For $x \neq v, y \neq v \in V$,
there is path between x and y in G since connected.
and does not use v (degree 1)
$\implies G - v$ is connected.
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” ≡
“G is connected and has no cycles.”

Proof of \Rightarrow:

By induction on $|V|$.

Base Case:
$|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.

Proof: First, connected \Rightarrow every vertex degree ≥ 1.

Sum of degrees is $2|V| - 2$.

Average degree $2 - 2/|V|$.

Not everyone is bigger than average!

By degree 1 removal lemma, $G - v$ is connected.

$G - v$ has $|V| - 1$ vertices and $|V| - 2$ edges so by induction \Rightarrow no cycle in $G - v$.

And no cycle in G since degree 1 cannot participate in cycle.
Proof of only if.

Thm:
"G connected and has \(|V| − 1\) edges" \(\equiv\)
"G is connected and has no cycles."

Proof of \(\implies\) : By induction on \(|V|\).
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies: By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.
Proof of only if.

Thm:
“G connected and has \(|V| - 1\) edges” ≡
“G is connected and has no cycles.”

Proof of \(\Rightarrow\): By induction on \(|V|\).
Base Case: \(|V| = 1\). \(0 = |V| - 1\) edges and has no cycles.
Proof of only if.

Thm:
"G connected and has \(|V| − 1\) edges" ≡
"G is connected and has no cycles."

Proof of \implies: By induction on \(|V|\).
Base Case: \(|V| = 1\). \(0 = |V| − 1\) edges and has no cycles.

Induction Step:
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies: By induction on $|V|$.

Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:

Claim: There is a degree 1 node.
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
"G is connected and has no cycles."

Proof of \implies: By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
Proof: First, connected \implies every vertex degree ≥ 1.
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” ≡
“G is connected and has no cycles.”

Proof of \implies: By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
 Proof: First, connected \implies every vertex degree ≥ 1.
 Sum of degrees is $2|V| - 2$
Proof of only if.

Thm:
"G connected and has $|V| - 1$ edges" \equiv
"G is connected and has no cycles."

Proof of \implies: By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
Proof: First, connected \implies every vertex degree ≥ 1.
Sum of degrees is $2|V| - 2$
Average degree $2 - 2/|V|$
Proof of only if.

Thm: “G connected and has $|V| - 1$ edges” \equiv “G is connected and has no cycles.”

Proof of \Rightarrow: By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
Proof: First, connected \Rightarrow every vertex degree ≥ 1.
- Sum of degrees is $2|V| - 2$
- Average degree $2 - 2/|V|$
- Not everyone is bigger than average!
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies : By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
 Proof: First, connected \implies every vertex degree ≥ 1.
 Sum of degrees is $2|V| - 2$
 Average degree $2 - 2/|V|$
 Not everyone is bigger than average!
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies
By induction on $|V|$.

Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1.

Sum of degrees is $2|V| - 2$
Average degree $2 - 2/|V|$
Not everyone is bigger than average!

By degree 1 removal lemma, $G - v$ is connected.

\square
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies : By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
Proof: First, connected \implies every vertex degree ≥ 1.
 Sum of degrees is $2|V| - 2$
 Average degree $2 - 2/|V|$
 Not everyone is bigger than average!
By degree 1 removal lemma, $G - v$ is connected.
$G - v$ has $|V| - 1$ vertices and $|V| - 2$ edges so by induction
Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies : By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
Proof: First, connected \implies every vertex degree ≥ 1.
- Sum of degrees is $2|V| - 2$
- Average degree $2 - 2/|V|$
- Not everyone is bigger than average!

By degree 1 removal lemma, $G - v$ is connected.
$G - v$ has $|V| - 1$ vertices and $|V| - 2$ edges so by induction
\implies no cycle in $G - v$.
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \equiv: By induction on $|V|$.

Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:

Claim: There is a degree 1 node.

Proof: First, connected \implies every vertex degree ≥ 1.

- Sum of degrees is $2|V| - 2$
- Average degree $2 - 2/|V|$
- Not everyone is bigger than average!

By degree 1 removal lemma, $G - v$ is connected.

$G - v$ has $|V| - 1$ vertices and $|V| - 2$ edges so by induction \implies no cycle in $G - v$.

And no cycle in G since degree 1 cannot participate in cycle.
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \implies : By induction on $|V|$.
Base Case: $|V| = 1$. $0 = |V| - 1$ edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.
Proof: First, connected \implies every vertex degree ≥ 1.
Sum of degrees is $2|V| - 2$
Average degree $2 - 2/|V|$
Not everyone is bigger than average!
By degree 1 removal lemma, $G - v$ is connected.
$G - v$ has $|V| - 1$ vertices and $|V| - 2$ edges so by induction
\implies no cycle in $G - v$.
And no cycle in G since degree 1 cannot participate in cycle.
Thm:
“G is connected and has no cycles”
\[\implies \text{“G connected and has } |V| - 1 \text{ edges”} \]

Proof:

Walk from a vertex using untraversed edges. Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can't visit more than once since no cycle.
Entered.
Didn't leave.
Only one incident edge.
Removing node doesn't create cycle.
Removing degree 1 node doesn't disconnect from Degree 1 lemma.

By induction
\[G - v \text{ has } |V| - 2 \text{ edges.} \]
\[G \text{ has one more or } |V| - 1 \text{ edges.} \]
Proof of if

Thm:
“G is connected and has no cycles”
\[\implies \text{“G connected and has } |V| - 1 \text{ edges”} \]

Proof:
Walk from a vertex using untraversed edges.
Proof of if

Thm:
“G is connected and has no cycles”

⇒ “G connected and has $|V| - 1$ edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.
Proof of if

Thm:
“G is connected and has no cycles”
⇒ “G connected and has $|V| - 1$ edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.
Thm:
“G is connected and has no cycles”
⇒ “G connected and has $|V| - 1$ edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Proof of if

Thm:
“G is connected and has no cycles”
\[\Rightarrow \text{“G connected and has } |V| - 1 \text{ edges”}\]

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered.
Proof of if

Thm:
“G is connected and has no cycles”
\[\implies \text{"G connected and has } |V| - 1 \text{ edges"} \]

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave.
Proof of if

Thm:
“G is connected and has no cycles”

⇒ “G connected and has $|V| - 1$ edges”

Proof:
Walk from a vertex using untraversed edges. Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Proof of if

Thm:
“G is connected and has no cycles”
\[\implies \text{“G connected and has } |V| - 1 \text{ edges”} \]

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Proof of if

Thm:
“G is connected and has no cycles”
\[\implies \text{“G connected and has } |V| - 1 \text{ edges”} \]

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
Proof of if

Thm:
“G is connected and has no cycles”
\[\implies\] “G connected and has \(|V| - 1\) edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
New graph is connected.
Proof of if

Thm:
“G is connected and has no cycles”
\[\implies \text{“G connected and has } |V| - 1 \text{ edges”} \]

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.

Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
Proof of if

Thm:
“G is connected and has no cycles”
⇒ “G connected and has |V| – 1 edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.

Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
By induction \(G - v \) has \(|V| - 2 \) edges.
Thm:
“G is connected and has no cycles”
\[\implies \text{“G connected and has } |V| - 1 \text{ edges”}\]

Proof:
Walk from a vertex using untraversed edges. Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
By induction \(G - v \) has \(|V| - 2 \) edges.
\(G \) has one more or \(|V| - 1 \) edges.
Thm:
“G is connected and has no cycles”
\[\implies \text{ "G connected and has } |V| - 1 \text{ edges"} \]

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
By induction \(G - v \) has \(|V| - 2 \) edges.
\(G \) has one more or \(|V| - 1 \) edges.
Tree's fall apart.

Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Tree’s fall apart.

Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Remove center node.
Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Remove center node.
Tree’s fall apart.

Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Remove center node.
Tree’s fall apart.

Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Remove center node.
Tree’s fall apart.

Thm: There is one vertex whose removal disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Remove center node.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar?

Yes for Triangle.

Four node complete?

Yes.

Five node complete or K_5?

No!

Why?

Later.

Two to three nodes, bipartite?

Yes.

Three to three nodes, complete/bipartite or $K_3,3$?

No.

Why?

Later.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete?

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or K_3,3. No. Why? Later.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No!
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No!
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why?
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite?
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$. No.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$. No. Why?
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$. No. Why? Later.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle?

2

Complete on four vertices or K_4?

4

Bipartite, complete two/three or $K_2,3$?

3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle:

$3 + 2 = 3 + 2$

K_4:

$4 + 4 = 6 + 2$

$K_2,3$:

$5 + 3 = 6 + 2$

Examples = 3!

Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle?
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle? 2

Examples = 3!

Proven! Not!!!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4?

Examples = 3!

Proven! Not!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for triangle? 2
complete on four vertices or K_4? 4
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$?

Examples = 3!

Proven! Not!!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4? 4
bipartite, complete two/three or $K_{2,3}$? 3
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4? 4
bipartite, complete two/three or $K_{2,3}$? 3
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle:
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for

- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4:
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4? 4
bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
 triangle? 2
 complete on four vertices or K_4? 4
 bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$:
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$

$K_{2,3}$: $5 + 3 = 6 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4? 4
bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$

$K_{2,3}$: $5 + 3 = 6 + 2!$
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$

$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$

K_4: $4 + 4 = 6 + 2!$

$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3! Proven!
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
- triangle? 2
- complete on four vertices or K_4? 4
- bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3! Proven! Not!!!!
Euler and Polyhedron.

Greeks knew formula for polyhedron.
Euler and Polyhedron.

Greeks knew formula for polyhedron.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Faces?

\[
\begin{align*}
\text{Faces} & = 6 \\
\text{Edges} & = 12 \\
\text{Vertices} & = 8
\end{align*}
\]

Euler: Connected planar graph:

\[v + f = e + 2\]

Greeks couldn't prove it.

Induction?

Remove vertex for polyhedron?

Polyhedron without holes \(\equiv\) Planar graphs.

Surround by sphere.

Project from point inside polytope onto sphere.

Sphere \(\equiv\) Plane!

Topologically.

Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Faces? 6. Edges?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph:

\[v + f = e + 2. \]

Greeks couldn't prove it.

Induction?

Remove vertice for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.

Project from point inside polytope onto sphere.

Sphere \(\equiv \) Plane!

Topologically.

Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.

Greeks couldn't prove it. Induction?

Remove vertex for polyhedron?

Polyhedron without holes \equiv Planar graphs.

Surround by sphere. Project from point inside polytope onto sphere.

Sphere \equiv Plane! Topologically.

Euler proved formula thousands of years later!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.

$8 + 6 = 12 + 2$.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2. \)

\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.
$8 + 6 = 12 + 2$.

Greeks couldn’t prove it. Induction?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).

\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?
Polyhedron without holes \(\equiv \)
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[
8 + 6 = 12 + 2.
\]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.
$8 + 6 = 12 + 2$.

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?
Polyhedron without holes \equiv Planar graphs.
Surround by sphere.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes ≡ Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: \(v + f = e + 2 \).
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv \) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \(\equiv \) Plane!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.
\[8 + 6 = 12 + 2.\]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \equiv Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \equiv Plane! Topologically.
Euler and Polyhedron.

Greeks knew formula for polyhedron.

Euler: Connected planar graph: $v + f = e + 2$.
$8 + 6 = 12 + 2$.

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \equiv Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \equiv Plane! Topologically.

Euler proved formula thousands of years later!
Euler and planarity of K_5 and $K_{3,3}$

We consider graphs where $v \geq 3$. Each face is adjacent to edge at least 3 times for simple graph. Each edge is adjacent to (at most) two faces.

$3f \leq 2e$ for any planar graph with more than 2 vertices.

\[\Rightarrow e \leq \frac{3v}{2} - 3\]

K_5: Edges? 4 + 3 + 2 + 1 = 10.

Vertices? 5.

10 \n\not< \n\frac{3(5)}{2} - 6 = 9.

$\Rightarrow K_5$ is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

K_5 edges: $4 + 3 + 2 + 1 = 10$.

K_5 vertices: 5.

$10 \not\leq 3(5) - 6 = 9$.

$\Rightarrow K_5$ is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph. We consider graphs where $v \geq 3$.

K_5 Edges? $4 + 3 + 2 + 1 = 10$. Vertices? 5. $10 \not\leq 3(5) - 6 = 9 \Rightarrow K_5$ is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.
We consider graphs where $v \geq 3$.
Each face is adjacent to edge at least 3 times for simple graph.

\[10 \not\leq 3(5) - 6 = 9 \]
\[\Rightarrow K_5 \text{ is not planar.} \]
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

K_5 Edges?

$4 + 3 + 2 + 1 = 10.$

$5.$

$10 \not\leq 3(5) - 6 = 9.$

$\Rightarrow K_5$ is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$. Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

K$_5$ Edges?

$4 + 3 + 2 + 1 = 10.$

Vertices?

5.

$10 \not\leq 3(5) - 6 = 9.$

\Rightarrow K$_5$ is not planar.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.
We consider graphs where $v \geq 3$.
Each face is adjacent to edge at least 3 times for simple graph.
$\geq 3f$ face-edge adjacencies.
Each edge is adjacent to (at most) two faces.
$\leq 2e$ face-edge adjacencies.
$\implies 3f \leq 2e$ for any
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\Rightarrow 3f \leq 2e$ for any planar graph.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\Rightarrow 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3}e \geq f$.

K5

K3,3
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3}e \geq f$.

+ Euler:
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3}e \geq f$.

$+\text{ Euler: } v + \frac{2}{3}e \geq e + 2$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3} e \geq f$.

$+ $ Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.
We consider graphs where $v \geq 3$.
Each face is adjacent to edge at least 3 times for simple graph.
$\geq 3f$ face-edge adjacencies.
Each edge is adjacent to (at most) two faces.
$\leq 2e$ face-edge adjacencies.
$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices
... or $\frac{2}{3} e \geq f$.

$+ \text{ Euler: } v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

K_5
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\Rightarrow 3f \leq 2e$ for any planar graph with more than 2 vertices...

... or $\frac{2}{3}e \geq f$.

+ Euler: $v + \frac{2}{3}e \geq e + 2 \Rightarrow e \leq 3v - 6$

K_5 Edges?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3}e \geq f$.

+ Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges? $4 + 3 + 2 + 1$
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3} e \geq f$.

+ Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges? $4 + 3 + 2 + 1 = 10$.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.
We consider graphs where $v \geq 3$.
Each face is adjacent to edge at least 3 times for simple graph.
$\geq 3f$ face-edge adjacencies.
Each edge is adjacent to (at most) two faces.
$\leq 2e$ face-edge adjacencies.
$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices
... or $\frac{2}{3}e \geq f$.

+ Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

K_5 Edges? $4 + 3 + 2 + 1 = 10$. Vertices?
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.
We consider graphs where $v \geq 3$.
Each face is adjacent to edge at least 3 times for simple graph.
$\geq 3f$ face-edge adjacencies.
Each edge is adjacent to (at most) two faces.
$\leq 2e$ face-edge adjacencies.
$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices
... or $\frac{2}{3}e \geq f$.

+ Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3}e \geq f$.

$+$ Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \not\leq 3(5) - 6 = 9$.
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to edge at least 3 times for simple graph.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph with more than 2 vertices

... or $\frac{2}{3}e \geq f$.

+ Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$10 \not\leq 3(5) - 6 = 9. \implies K_5$ is not planar.
$K_{3,3}$ non-planarity.

\[
\begin{align*}
\text{Euler:} & \quad v + 2e \geq e + 2 = \Rightarrow e \leq 3v - 6 \\
\text{Vertices:} & \quad 9, 3 \\
\text{Edges:} & \quad 9, 3 \\
\text{Sure!} & \quad 9 \not\leq 2(6) - 4 \\
\text{Planar?} & \quad No. \\
\text{No cycles that are triangles.} & \\
\text{Cycles of length } \geq 4 & \\
\text{At least 4 } f \text{ face-edge adjacencies, and at most 2 } e. & \\
\text{... } 4 f \leq 2 e & \\
\text{for any bipartite planar graph.} & \\
\text{Euler:} & \quad v + 1/2 e \geq e + 2 = \Rightarrow e \leq 2v - 4 \text{ for bipartite planar graph} \\
\end{align*}
\]
$K_{3,3}$ non-planarity.

\[v + \frac{2}{3} e \geq e + 2 \]

Planar? No.

No cycles that are triangles.

Cycles of length ≥ 4.

At least 4 face-edge adjacencies, and at most 2 for any bipartite planar graph.

Euler: $v + \frac{2}{3} e \geq e + 2$
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$?
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges?
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$?
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
Planar?
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.
$K_{3,3}$ non-planarity.

Euler: \(v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6 \)

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
Planar? No.
No cycles that are triangles.
\(K_{3,3} \) non-planarity.

\[
Euler: v + \frac{2}{3}e \geq e + 2 \quad \Longrightarrow \quad e \leq 3v - 6
\]

\(K_{3,3} ? \) Edges? 9. Vertices. 6. \(9 \leq 3(6) - 6? \) Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length \(\geq 4 \).
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.
At least $4f$ face-edge adjacencies,
\(K_{3,3} \) non-planarity.

Euler: \(v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6 \)

\(K_{3,3} \)? Edges? 9. Vertices. 6. \(9 \leq 3(6) - 6 \)? Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length \(\geq 4 \).

At least 4\(f \) face-edge adjacencies, and at most 2\(e \).
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.

At least $4f$ face-edge adjacencies,
 and at most $2e$.

.... $4f \leq 2e$
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.
At least $4f$ face-edge adjacencies,
 and at most $2e$.
 $\implies 4f \leq 2e$ for
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.
At least $4f$ face-edge adjacencies,
 and at most $2e$.
.... $4f \leq 2e$ for any
$K_{3,3}$ non-planarity.

\[v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6 \]

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.

Cycles of length ≥ 4.

At least $4f$ face-edge adjacencies,

and at most $2e$.

\[4f \leq 2e \text{ for any bipartite} \]
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.

Cycles of length ≥ 4.

At least 4f face-edge adjacencies,

and at most 2e.

.... $4f \leq 2e$ for any bipartite planar graph.
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.

Cycles of length ≥ 4.

At least 4f face-edge adjacencies,

and at most 2e.

.... 4f \leq 2e for any bipartite planar graph.

Euler: $v + \frac{1}{2}e \geq e + 2$
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!
Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.
At least 4f face-edge adjacencies,
 and at most 2e.
.... $4f \leq 2e$ for any bipartite planar graph.
Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$ for bipartite planar graph
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3} e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.

- Cycles of length ≥ 4.
- At least $4f$ face-edge adjacencies, and at most $2e$.

$\implies 4f \leq 2e$ for any bipartite planar graph.

Euler: $v + \frac{1}{2} e \geq e + 2 \implies e \leq 2v - 4$ for bipartite planar graph.
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.
At least $4f$ face-edge adjacencies,
 and at most $2e$.

.... $4f \leq 2e$ for any bipartite planar graph.
Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$ for bipartite planar graph

$9 \not\leq 2(6) - 4$.
$K_{3,3}$ non-planarity.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

Planar? No.

No cycles that are triangles.
 Cycles of length ≥ 4.

At least $4f$ face-edge adjacencies,
 and at most $2e$.

.... $4f \leq 2e$ for any bipartite planar graph.

Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$ for bipartite planar graph

$9 \not\leq 2(6) - 4. \implies K_{3,3}$ is not planar!
A tree is a connected acyclic graph.
A tree is a connected acyclic graph.
To tree or not to tree!
A tree is a connected acyclic graph.

To tree or not to tree!

![Diagram of trees and connected components]
A tree is a connected acyclic graph.

To tree or not to tree!

Yes.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No.
A tree is a connected acyclic graph.
To tree or not to tree!

Yes. No. Yes. No. No.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces?
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Recall: $e = v - 1$ for tree.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Recall: \(e = v - 1 \) for tree.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Recall: \(e = v - 1 \) for tree.

One face for trees!
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Recall: \(e = v - 1 \) for tree.

One face for trees!

Euler works for trees: \(v + f = e + 2 \).
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Recall: $e = v - 1$ for tree.

One face for trees!

Euler works for trees: $v + f = e + 2$.

$v + 1 = v - 1 + 2$
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Recall: $e = v - 1$ for tree.

One face for trees!

Euler works for trees: $v + f = e + 2$.

$v + 1 = v - 1 + 2$
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch:
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.

Base:
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0 \),
Euler's formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \; v = f = 1 \).
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$.
Induction Step:
Euler's formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.

Base: $e = 0$, $v = f = 1$.

Induction Step:
- If it is a tree.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$.
Induction Step:
 If it is a tree. Done.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \ v = f = 1 \).
Induction Step:
 - If it is a tree. Done.
 - If not a tree.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).

Base: \(e = 0 \), \(v = f = 1 \).

Induction Step:
- If it is a tree. Done.
- If not a tree.
 - Find a cycle.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0, \ v = f = 1$.
Induction Step:
 - If it is a tree. Done.
 - If not a tree.
 Find a cycle. Remove edge.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$.
Induction Step:
- If it is a tree. Done.
- If not a tree.
 - Find a cycle. Remove edge.

```
  f1
 /|
/  |
```

Outer face.

Joins two faces.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$.
Induction Step:
 - If it is a tree. Done.
 - If not a tree.
 - Find a cycle. Remove edge.
 - Joins two faces.
 - New graph: v-vertices.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$.
Induction Step:
 If it is a tree. Done.
 If not a tree.
Find a cycle. Remove edge.

\[f_{1} \]

Outer face.

Joins two faces.
New graph: v-vertices. $e - 1$ edges.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).

Base: \(e = 0, \ v = f = 1 \).

Induction Step:
- If it is a tree. Done.
- If not a tree.

 Find a cycle. Remove edge.

\[
\text{Joins two faces. New graph: } v\text{-vertices. } e-1\text{ edges. } f-1\text{ faces.}
\]
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0, \ v = f = 1$.
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.
 Joins two faces.
 New graph: v-vertices. $e - 1$ edges. $f - 1$ faces. Planar.
Euler’s formula.

Euler: Connected planar graph has $v + f = e + 2$.

Proof sketch: Induction on e.
Base: $e = 0$, $v = f = 1$.
Induction Step:
 - If it is a tree. Done.
 - If not a tree.
 - Find a cycle. Remove edge.

 ![Diagram of a cycle](image)

 Outer face.

 - Joins two faces.
 - $v + (f - 1) = (e - 1) + 2$ by induction hypothesis.
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).
Base: \(e = 0, \ v = f = 1 \).
Induction Step:
 If it is a tree. Done.
 If not a tree.
 Find a cycle. Remove edge.

\[
\begin{array}{c}
\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array} \\
\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\end{array} \\
\begin{array}{c}
\cdot \\
\cdot \\
\end{array}
\end{array}
\]

Outer face.

Joins two faces.
New graph: \(v \)-vertices. \(e - 1 \) edges. \(f - 1 \) faces. Planar.
\(v + (f - 1) = (e - 1) + 2 \) by induction hypothesis.
Therefore \(v + f = e + 2 \).
Euler’s formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).

Base: \(e = 0, v = f = 1 \).

Induction Step:

- If it is a tree. Done.
- If not a tree.

 Find a cycle. Remove edge.

 ![Diagram of a cycle](image)

 Joins two faces.

 New graph: \(v \)-vertices. \(e - 1 \) edges. \(f - 1 \) faces. Planar.

\[
 v + (f - 1) = (e - 1) + 2 \text{ by induction hypothesis.}
\]

Therefore \(v + f = e + 2 \).
Summary

Graphs, trees, complete graphs, planar graphs.
Summary

Graphs, trees, complete graphs, planar graphs.
Euler’s formula.
Summary

Graphs, trees, complete graphs, planar graphs.
Euler’s formula.
Have a nice weekend!