
Today

More graph theory.

Modular Arithmetic.

Inverses.

Today

More graph theory.

Modular Arithmetic.

Inverses.

Today

More graph theory.

Modular Arithmetic.

Inverses.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.

Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.

Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do.

Algorithm!

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!

Planar graphs and maps.

Planar graph coloring ≡ map coloring.

Four color theorem is about planar graphs!

Planar graphs and maps.

Planar graph coloring ≡ map coloring.

Four color theorem is about planar graphs!

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: e ≤ 3v −6 for any planar graph where v > 2.
From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e

Average degree: ≤ 2e
v ≤

2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v

≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v

≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6

or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.

Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.

Color is available for v since only five neighbors...
and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph where v > 2.

From Euler’s Formula.

Total degree: 2e
Average degree: ≤ 2e

v ≤
2(3v−6)

v ≤ 6− 12
v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.
Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.

Connected components.
Can switch in one component.
Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.

Can switch in one component.
Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.

Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.

Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.

Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.
Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.
Or the other.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Look at only green and blue.
Connected components.
Can switch in one component.
Or the other.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof:

Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex.

Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.

Otherwise done.
Switch green to blue in component.

Done. Unless blue-green path to blue.
Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.

Done. Unless blue-green path to blue.
Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done.

Unless blue-green path to blue.
Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...

· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...

· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...

· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done.

Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...

· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar.

=⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.

Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction.

Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two
colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch orange to red in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof:

Not Today!

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!

Hypercubes.
Complete graphs, really connected!

But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees,

few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)

but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes.

Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected.

|V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!

Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)

|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,

|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices.

number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!

n2n−1 edges.
2n vertices each of degree n

total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n

total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n

and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Hypercubes.
Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, few edges. (|V |−1)
but just falls apart!

Hypercubes. Really connected. |V | log |V | edges!
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|
Terminology:
(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S;

|E ∩S× (V −S)| ≥ |S|
Terminology:
(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|

Terminology:
(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|
Terminology:

(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|
Terminology:
(S,V −S) is cut.

(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|
Terminology:
(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|
Terminology:
(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| ≤ |V |/2 has ≥ |S|
edges connecting it to V −S; |E ∩S× (V −S)| ≥ |S|
Terminology:
(S,V −S) is cut.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:

Base Case: n = 1 V= {0,1}.
S = {0} has one edge leaving. |S|= φ has 0.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:
Base Case: n = 1

V= {0,1}.
S = {0} has one edge leaving. |S|= φ has 0.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:
Base Case: n = 1 V= {0,1}.

S = {0} has one edge leaving. |S|= φ has 0.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:
Base Case: n = 1 V= {0,1}.
S = {0} has one edge leaving.

|S|= φ has 0.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:
Base Case: n = 1 V= {0,1}.
S = {0} has one edge leaving. |S|= φ has 0.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:
Base Case: n = 1 V= {0,1}.
S = {0} has one edge leaving. |S|= φ has 0.

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.
Proof:
Base Case: n = 1 V= {0,1}.
S = {0} has one edge leaving. |S|= φ has 0.

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.
Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.
Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.

Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.
Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.
Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.
Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side.

Use recursive definition into two subcubes: S = S0∪S1.

Two cubes connected by edges.
Case 1: Count edges inside
subcube inductively.

S0 S1

Case 2: Count inside and across.

S0 S1

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.

Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.

Recursive definition:
H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.

H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)

S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2

Both S0 and S1 are small sides. So by induction.
Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides.

So by induction.
Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.
Edges cut in H0 ≥ |S0|.

Edges cut in H1 ≥ |S1|.
Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.
Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.
Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.
Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step :Optional Material

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0∪V1,E0∪E1∪Ex)
S = S0∪S1 where S0 in first, and S1 in other.

Case 1: |S0| ≤ |V0|/2, |S1| ≤ |V1|/2
Both S0 and S1 are small sides. So by induction.
Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.

Recall Case 1: |S0|, |S1| ≤ |V |/2
|S1| ≤ |V1|/2 since |S| ≤ |V |/2.

=⇒ ≥ |S1| edges cut in E1.
|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2

=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.

=⇒ ≥ |S1| edges cut in E1.
|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2

=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2

=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.

=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:

≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥

|S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|

+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|

+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|

= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|

|V0|= |V |/2≥ |S|.
Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|

= |V |/2≥ |S|.
Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.

S0 S1

|S0| ≥ |V0|/2.
Recall Case 1: |S0|, |S1| ≤ |V |/2

|S1| ≤ |V1|/2 since |S| ≤ |V |/2.
=⇒ ≥ |S1| edges cut in E1.

|S0| ≥ |V0|/2 =⇒ |V0−S| ≤ |V0|/2
=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ = |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2≥ |S|.

Also, case 3 where |S1| ≥ |V |/2 is symmetric.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 valued
vertices to 1 valued vertices on boolean functions on {0,1}n.

Central area of study in computer science!

Yes/No Computer Programs ≡ Boolean function on {0,1}n

Hypercubes central in error correcting codes.

Central object of study.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 valued
vertices to 1 valued vertices on boolean functions on {0,1}n.

Central area of study in computer science!

Yes/No Computer Programs ≡ Boolean function on {0,1}n

Hypercubes central in error correcting codes.

Central object of study.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 valued
vertices to 1 valued vertices on boolean functions on {0,1}n.

Central area of study in computer science!

Yes/No Computer Programs ≡ Boolean function on {0,1}n

Hypercubes central in error correcting codes.

Central object of study.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 valued
vertices to 1 valued vertices on boolean functions on {0,1}n.

Central area of study in computer science!

Yes/No Computer Programs ≡ Boolean function on {0,1}n

Hypercubes central in error correcting codes.

Central object of study.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 valued
vertices to 1 valued vertices on boolean functions on {0,1}n.

Central area of study in computer science!

Yes/No Computer Programs ≡ Boolean function on {0,1}n

Hypercubes central in error correcting codes.

Central object of study.

And now for Modular Arithmetic.

1. Modular Arithmetic.

Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

3. Euclid’s GCD Algorithm.
A little tricky here!

And now for Modular Arithmetic.

1. Modular Arithmetic.
Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

3. Euclid’s GCD Algorithm.
A little tricky here!

And now for Modular Arithmetic.

1. Modular Arithmetic.
Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.

Division!!!

3. Euclid’s GCD Algorithm.
A little tricky here!

And now for Modular Arithmetic.

1. Modular Arithmetic.
Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

3. Euclid’s GCD Algorithm.
A little tricky here!

And now for Modular Arithmetic.

1. Modular Arithmetic.
Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

3. Euclid’s GCD Algorithm.

A little tricky here!

And now for Modular Arithmetic.

1. Modular Arithmetic.
Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

3. Euclid’s GCD Algorithm.
A little tricky here!

Clock Math

If it is 1:00 now.

What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours?

3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours?

6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!
Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours?

16:00!
Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.

Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

101 = 12×8+5.
5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}

(Almost remainder, except for 12 and 0 are equivalent.)

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Day of the week.

Today is Monday.

What day is it a year from now? on September 11, 2018?
Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now?

on September 11, 2018?
Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now.

day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7

or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0

or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now.

day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27

or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now

is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6

which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?

Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year.

So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.

Day 1+365 or day 366.
Smallest representation:

subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:

subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.

divide and get remainder.
366/6 leaves quotient of 52 and remainder 2.

or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6

leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.

or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Day of the week.

Today is Monday.
What day is it a year from now? on September 11, 2018?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?
Next year is not a leap year. So 365 days from now.
Day 1+365 or day 366.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.
or September 11, 2018 is a Tuesday.

Years and years...

80 years from now?

20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years.

366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days

60 regular years. 365×60 days
Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years.

365×60 days
Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.

It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60.

Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7?

52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.

What is remainder of 365 when dividing by 7? 1
Today is day 1.

Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7?

1
Today is day 1.

Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.

Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60

= 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101

Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7?

102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7

+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.

Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.
Get Day: 1+2×6+1×4 = 17.

Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.

Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4.

September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 1.
It is day 1+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 1.
Get Day: 1+2×20+1×60 = 101
Remainder when dividing by 7? 102 = 14×7+3.
Or September 11, 2097 is Wednesday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 1+2×6+1×4 = 17.
Or Day 4. September 11, 2097 is Wednesday.

“Reduce” at any time in calculation!

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.

...or x and y have the same remainder w.r.t. m.

...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.

...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:

{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .}

{. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .}

...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)

=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .

If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .

Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore,

a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m

and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.

=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Modular Arithmetic: formalism.

For x ,y ∈ N, x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Notation

x (mod m) or mod (x ,m)

- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12

= 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12

= 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4

X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.

a≡ b (mod m).
Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡

3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3

≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10

(mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 =

3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3

= 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10

(mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).

But ok, if you really want.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;

1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).
2 ·4x = 2 ·5 (mod 7)

8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).
2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)

x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).
2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)

Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).
2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check!

4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).
2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4”

=⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b,

where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1

=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.

=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.

So (a−b) has to be multiple of m.
=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m.

But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}.

Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Summary

Planar Coloring.

Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.
Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.

Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.
Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.
Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.
Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.

Another form of arithmetic.
Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.

Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.
Multiplicative inverses.

Have a good week!

Summary

Planar Coloring.
Induction.
Recoloring again.

Hypercubes.

Modular Arithmetic.
Another form of arithmetic.
Multiplicative inverses.

Have a good week!

