

More graph theory.

More graph theory. Modular Arithmetic.

More graph theory. Modular Arithmetic. Inverses.

Given G = (V, E), a coloring of a *G* assigns colors to vertices *V* where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.

Given G = (V, E), a coloring of a *G* assigns colors to vertices *V* where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices.

Given G = (V, E), a coloring of a *G* assigns colors to vertices *V* where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.

Given G = (V, E), a coloring of a *G* assigns colors to vertices *V* where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.

Given G = (V, E), a coloring of a *G* assigns colors to vertices *V* where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.

Interesting things to do.

Given G = (V, E), a coloring of a *G* assigns colors to vertices *V* where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.

Interesting things to do. Algorithm!

Planar graphs and maps.

Planar graph coloring \equiv map coloring.

Planar graphs and maps.

Planar graph coloring \equiv map coloring.

Four color theorem is about planar graphs!

Theorem: Every planar graph can be colored with six colors.

Theorem: Every planar graph can be colored with six colors. **Proof:**

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2.

Theorem: Every planar graph can be colored with six colors.

Proof:

```
Recall: e \le 3v - 6 for any planar graph where v > 2.
From Euler's Formula.
```

Theorem: Every planar graph can be colored with six colors.

Proof:

```
Recall: e \le 3v - 6 for any planar graph where v > 2.
From Euler's Formula.
```

Total degree: 2e

Theorem: Every planar graph can be colored with six colors.

Proof:

```
Recall: e \le 3v - 6 for any planar graph where v > 2.
From Euler's Formula.
```

Total degree: 2eAverage degree: $\leq \frac{2e}{v}$

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2eAverage degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v}$

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2eAverage degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2eAverage degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2eAverage degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2e

Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2eAverage degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5. Inductively color remaining graph.

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2eAverage degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex *v* of degree at most 5. Inductively color remaining graph.

Color is available for v since only five neighbors...

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2e

Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex *v* of degree at most 5. Inductively color remaining graph. Color is available for *v* since only five neighbors... and only five colors are used.

Theorem: Every planar graph can be colored with six colors.

Proof:

Recall: $e \le 3v - 6$ for any planar graph where v > 2. From Euler's Formula.

Total degree: 2e

Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex *v* of degree at most 5. Inductively color remaining graph. Color is available for *v* since only five neighbors... and only five colors are used.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Five color theorem: prelimnary.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue.
Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components. Can switch in one component.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components. Can switch in one component.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components. Can switch in one component.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components. Can switch in one component. Or the other.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components. Can switch in one component. Or the other.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Look at only green and blue. Connected components. Can switch in one component. Or the other.

Theorem: Every planar graph can be colored with five colors.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Switch green to blue in component.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component. Done.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component. Done. Unless red-orange path to red.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component. Done. Unless red-orange path to red.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component. Done. Unless red-orange path to red.

Planar.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component. Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component. Done. Unless blue-green path to blue.
Switch orange to red in its component. Done. Unless red-orange path to red.
Planar. ⇒ paths intersect at a vertex!

What color is it?

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component. Done. Unless blue-green path to blue.
Switch orange to red in its component. Done. Unless red-orange path to red.
Planar. ⇒ paths intersect at a vertex!

What color is it?

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done. Switch green to blue in component. Done. Unless blue-green path to blue. Switch orange to red in its component. Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Switch green to blue in component.

Done. Unless blue-green path to blue. Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path. Must be red or orange to be on that path.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Switch green to blue in component.

Done. Unless blue-green path to blue. Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path. Must be red or orange to be on that path.

Contradiction.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Switch green to blue in component.

Done. Unless blue-green path to blue. Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path. Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors. And recolor "center" vertex.

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Switch green to blue in component.

Done. Unless blue-green path to blue. Switch orange to red in its component.

Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!

What color is it?

Must be blue or green to be on that path. Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors. And recolor "center" vertex.

Theorem: Any planar graph can be colored with four colors.

Theorem: Any planar graph can be colored with four colors. **Proof:**

Theorem: Any planar graph can be colored with four colors. **Proof:** Not Today!
Four Color Theorem

Theorem: Any planar graph can be colored with four colors. **Proof:** Not Today!

Complete graphs, really connected!

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees,

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes.

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected.

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges!

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G=(V,E)

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E) $|V| = \{0, 1\}^n$,

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x, y)|x and y differ in one bit position.}

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x,y)|x and y differ in one bit position.}

0 1 O---C

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x,y)|x and y differ in one bit position.}

0 1 O---O

2ⁿ vertices.

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

0 1 O----O

2ⁿ vertices. number of *n*-bit strings!

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x,y)|x and y differ in one bit position.}

0 1 O—O

 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x,y)|x and y differ in one bit position.}

0 1 O---O

 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

 2^n vertices each of degree n

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

 2^n vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

 2^n vertices each of degree *n* total degree is $n2^n$

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x,y)|x and y differ in one bit position.}

0 1 O---O

2ⁿ vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

 2^n vertices each of degree n

total degree is $n2^n$ and half as many edges!

Complete graphs, really connected! But lots of edges. |V|(|V|-1)/2Trees, few edges. (|V|-1)but just falls apart!

Hypercubes. Really connected. $|V|\log|V|$ edges! Also represents bit-strings nicely.

G = (V, E)|V| = {0,1}ⁿ, |E| = {(x,y)|x and y differ in one bit position.}

0 1 O---O

2ⁿ vertices. number of *n*-bit strings!

 $n2^{n-1}$ edges.

 2^n vertices each of degree n

total degree is $n2^n$ and half as many edges!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x(1x) with the additional edges (0x, 1x).

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S;

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology: (S, V - S) is cut.

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology: (S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology: (S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges. **Thm:** Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology: (S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Proof of Large Cuts.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Proof of Large Cuts.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** Base Case: n = 1
Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Base Case: $n = 1 V = \{0, 1\}$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:**

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes: $S = S_0 \cup S_1$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes: $S = S_0 \cup S_1$.

Two cubes connected by edges.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes: $S = S_0 \cup S_1$.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes: $S = S_0 \cup S_1$.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes: $S = S_0 \cup S_1$.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes: $S = S_0 \cup S_1$.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$ $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$ $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction. Edges cut in $H_0 \ge |S_0|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

 $3 = 3_0 \cup 3_1$ where 3_0 in first, and 3_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \ge |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

 $3 = 3_0 \cup 3_1$ where 3_0 in first, and 3_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \ge |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction. Edges cut in $H_0 \ge |S_0|$. Edges cut in $H_1 \ge |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$, edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides. So by induction. Edges cut in $H_0 \ge |S_0|$. Edges cut in $H_1 \ge |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

 $|S_0| \ge |V_0|/2.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.

 $|S_0| \ge |V_0|/2.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{array}{l} \text{Case 2.} \\ S_0| \geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ S_1| \leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ \implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| \geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \end{array}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\implies &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2

$$\begin{array}{l} |S_0| \geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ S_1| \leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ \implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| \geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ \implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{array}$$

Edges in E_x connect corresponding nodes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

$$\begin{split} &|S_0| \ge |V_0|/2. \\ & \text{Recall Case 1: } |S_0|, |S_1| \le |V|/2 \\ &|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2. \\ &\implies \ge |S_1| \text{ edges cut in } E_1. \\ &|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2 \\ &\implies \ge |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

$$\begin{split} &|S_0| \ge |V_0|/2. \\ & \text{Recall Case 1: } |S_0|, |S_1| \le |V|/2 \\ &|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2. \\ &\implies \ge |S_1| \text{ edges cut in } E_1. \\ &|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2 \\ &\implies \ge |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{split} & (S_0) \geq |V_0|/2. \\ & \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ & S_1| \leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ & \implies \geq |S_1| \text{ edges cut in } E_1. \\ & |S_0| \geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ & \implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\implies &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 \geq
Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

$$\begin{split} &|S_0| \ge |V_0|/2, \\ &\text{Recall Case 1: } |S_0|, |S_1| \le |V|/2 \\ &|S_1| \le |V_1|/2 \text{ since } |S| \le |V|/2, \\ &\implies \ge |S_1| \text{ edges cut in } E_1, \\ &|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2 \\ &\implies \ge |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut: $|S_1|$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\implies &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut: $\geq |S_1| + |V_0| - |S_0|$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

 $\begin{array}{l} \mbox{Total edges cut:} \\ \geq \ |S_1| + |V_0| - |S_0| + |S_0| - |S_1| \end{array}$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\implies &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

 $\begin{array}{l} \text{Total edges cut:} \\ \geq & |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ & |V_0| \end{array}$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

 $\begin{array}{l} |S_0| \geq |V_0|/2. \\ |S_0| \geq |V_1|/2. \\ |S_1| \leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ \implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| \geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ \implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{array}$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

 $\begin{array}{l} \text{Total edges cut:} \\ \geq \ |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ |V_0| = |V|/2 \geq |S|. \end{array}$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2. $|S_0| \ge |V_0|$

$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\implies &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ |V_0| = |V|/2 \geq |S|.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.**

 $\begin{array}{l} |S_0| \geq |V_0|/2. \\ |S_1| \leq |V_1|/2 \text{ since } |S| \leq |V|/2 \\ \Rightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| \geq |V_0|/2 \Rightarrow |V_0 - S| \leq |V_0|/2 \\ \Rightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{array}$

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$ $|V_0| = |V|/2 \geq |S|.$

Also, case 3 where $|S_1| \ge |V|/2$ is symmetric.

The cuts in the hypercubes are exactly the transitions from 0 valued vertices to 1 valued vertices on boolean functions on $\{0,1\}^n$.

The cuts in the hypercubes are exactly the transitions from 0 valued vertices to 1 valued vertices on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

The cuts in the hypercubes are exactly the transitions from 0 valued vertices to 1 valued vertices on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

The cuts in the hypercubes are exactly the transitions from 0 valued vertices to 1 valued vertices on boolean functions on $\{0, 1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Hypercubes central in error correcting codes.

The cuts in the hypercubes are exactly the transitions from 0 valued vertices to 1 valued vertices on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Hypercubes central in error correcting codes.

Central object of study.

1. Modular Arithmetic.

1. Modular Arithmetic. Clock Math!!!

- 1. Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor.

- 1. Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!

- 1. Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 3. Euclid's GCD Algorithm.

- 1. Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 3. Euclid's GCD Algorithm. A little tricky here!

If it is 1:00 now.

If it is 1:00 now. What time is it in 2 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.
Clock Math

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Clock Math

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, \dots, 11\}$

Clock Math

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

Today is Monday.

Today is Monday. What day is it a year from now?

Today is Monday.

What day is it a year from now? on September 11, 2018?

Today is Monday. What day is it a year from now? on September 11, 2018? Number days.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1. 6 days from now.

Today is Monday.What day is it a year from now? on September 11, 2018?Number days.0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0

Today is Monday.What day is it a year from now? on September 11, 2018?Number days.0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.

26 days from now.

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7. 12 days from now

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now?

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now? Next year is not a leap year.

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.
26 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7.
12 days from now is day 6 which is Saturday!

What day is it a year from now? Next year is not a leap year. So 365 days from now.

Today is Monday.
What day is it a year from now? on September 11, 2018?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 1.
6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now? Next year is not a leap year. So 365 days from now. Day 1+365 or day 366.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now? Next year is not a leap year. So 365 days from now. Day 1+365 or day 366. Smallest representation:

Today is Monday. What day is it a year from now? on September 11, 2018? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now? Next year is not a leap year. So 365 days from now. Day 1+365 or day 366. Smallest representation:

subtract 7 until smaller than 7.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now? Next year is not a leap year. So 365 days from now. Day 1+365 or day 366.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now?

Next year is not a leap year. So 365 days from now.

Day 1+365 or day 366.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

366/6

Today is Monday. What day is it a year from now? on September 11, 2018? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now?

Next year is not a leap year. So 365 days from now.

Day 1+365 or day 366.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now?

Next year is not a leap year. So 365 days from now.

Day 1+365 or day 366.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.

or September 11, 2018 is a Tuesday.

Today is Monday. What day is it a year from now? on September 11, 2018? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 1.

6 days from now. day 7 or day 0 or Sunday.

26 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

12 days from now is day 6 which is Saturday!

What day is it a year from now?

Next year is not a leap year. So 365 days from now.

Day 1+365 or day 366.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

366/6 leaves quotient of 52 and remainder 2.

or September 11, 2018 is a Tuesday.

80 years from now?

80 years from now? 20 leap years.

80 years from now? 20 leap years. 366×20 days

80 years from now? 20 leap years. 366×20 days 60 regular years.
80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7?

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7?
```

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
```

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
```

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to? Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 1.

```
80 years from now? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 1.
It is day 1 + 366 \times 20 + 365 \times 60. Equivalent to?
```

Hmm.

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 1.
```

Get Day: $1 + 2 \times 20 + 1 \times 60$

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 1.

Get Day: $1 + 2 \times 20 + 1 \times 60 = 101$

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
```

```
What is remainder of 365 when dividing by 7? 1
```

Today is day 1.

```
Get Day: 1 + 2 \times 20 + 1 \times 60 = 101
```

```
Remainder when dividing by 7?
```

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 1. Get Day: $1+2 \times 20+1 \times 60 = 101$ Remainder when dividing by 7? $102 = 14 \times 7$

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 1. Get Day: $1 + 2 \times 20 + 1 \times 60 = 101$ Remainder when dividing by 7? $102 = 14 \times 7 + 3$.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 1. Get Day: $1+2 \times 20+1 \times 60 = 101$ Remainder when dividing by 7? $102 = 14 \times 7 + 3$. Or September 11, 2097 is Wednesday!

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to? Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 1. Get Day: $1+2 \times 20+1 \times 60 = 101$ Remainder when dividing by 7? $102 = 14 \times 7 + 3$. Or September 11, 2097 is Wednesday!

Further Simplify Calculation:

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 1.

Get Day: $1 + 2 \times 20 + 1 \times 60 = 101$

Remainder when dividing by 7? $102 = 14 \times 7 + 3$.

Or September 11, 2097 is Wednesday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 1.

Get Day: $1 + 2 \times 20 + 1 \times 60 = 101$

Remainder when dividing by 7? $102 = 14 \times 7 + 3$.

Or September 11, 2097 is Wednesday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 1.

Get Day: $1+2 \times 20 + 1 \times 60 = 101$ Remainder when dividing by 7? $102 = 14 \times 7 + 3$.

Or September 11, 2097 is Wednesday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $1 + 2 \times 6 + 1 \times 4 = 17$.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 1.

```
Get Day: 1+2 \times 20 + 1 \times 60 = 101
Remainder when dividing by 7? 102 = 14 \times 7 + 3.
Or September 11, 2097 is Wednesday!
```

Further Simplify Calculation:

20 has remainder 6 when divided by 7. 60 has remainder 4 when divided by 7. Get Day: $1+2\times 6+1\times 4=17$. Or Day 4.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 1.

```
Get Day: 1+2 \times 20 + 1 \times 60 = 101
Remainder when dividing by 7? 102 = 14 \times 7 + 3.
Or September 11, 2097 is Wednesday!
```

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $1 + 2 \times 6 + 1 \times 4 = 17$.

Or Day 4. September 11, 2097 is Wednesday.

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 1. It is day $1 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 1.

```
Get Day: 1+2 \times 20 + 1 \times 60 = 101
Remainder when dividing by 7? 102 = 14 \times 7 + 3.
Or September 11, 2097 is Wednesday!
```

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $1 + 2 \times 6 + 1 \times 4 = 17$.

Or Day 4. September 11, 2097 is Wednesday.

"Reduce" at any time in calculation!

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots, -7, 0, 7, 14, \ldots\}$

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\}$

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or " $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer *k*.
For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore,

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k+j)m and since k + j is integer.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a+b=c+d+(k+j)m and since k+j is integer. $\implies a+b\equiv c+d \pmod{m}$.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a+b=c+d+(k+j)m and since k+j is integer. $\implies a+b\equiv c+d \pmod{m}$.

For $x, y \in \mathbb{N}$, x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

Can calculate with representative in $\{0, \ldots, m-1\}$.

x (mod m) or mod(x,m)

x (mod m) or mod (x,m)- remainder of x divided by m in $\{0, ..., m-1\}$.

x (mod m) or mod (x,m)- remainder of x divided by m in $\{0, ..., m-1\}$.

x (mod m) or mod (x,m) - remainder of x divided by m in $\{0, ..., m-1\}$.

 $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$.

mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $|\frac{x}{m}|$ is quotient.

x (mod *m*) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x - $\lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod (29, 12) = 29 - ($\lfloor \frac{29}{12} \rfloor$) × 12

x (mod m) or mod (x,m) - remainder of x divided by m in {0,...,m-1}. mod (x,m) = x - $\lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod (29,12) = 29 - ($\lfloor \frac{29}{12} \rfloor$) × 12 = 29 - (2) × 12

x (mod m) or mod (x,m)- remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x,m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4$

x (mod m) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x - $\lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod (29, 12) = 29 - ($\lfloor \frac{29}{12} \rfloor$) × 12 = 29 - (2) × 12 = X = 5

x (mod *m*) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{x} = 5$ Work in this system.

 $x \pmod{m} \operatorname{or} \mod{(x,m)}$ $\operatorname{remainder of} x \operatorname{divided by} m \operatorname{in} \{0, \dots, m-1\}.$ $\operatorname{mod} (x,m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor \text{ is quotient.}$ $\operatorname{mod} (29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{x} = 5$ Work in this system. $a \equiv b \pmod{m}.$

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system. $a \equiv b \pmod{m}$.

Says two integers a and b are equivalent modulo m.

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system. $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system. $a \equiv b \pmod{m}$.

Says two integers a and b are equivalent modulo m.

Modulus is m

6 ≡

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system. $a \equiv b \pmod{m}$.

Says two integers a and b are equivalent modulo m.

Modulus is m

 $\mathbf{6}\equiv\mathbf{3}+\mathbf{3}$

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system. $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $\mathbf{6}\equiv\mathbf{3}+\mathbf{3}\equiv\mathbf{3}+\mathbf{10}$

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5$ Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5$ Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$. 6 =

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers a and b are equivalent modulo m.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$. 6 = 3 + 3

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5$ Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$. 6 = 3 + 3 = 3 + 10

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers a and b are equivalent modulo m.

Modulus is m

$$\begin{split} & 6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}. \\ & 6 = 3 + 3 = 3 + 10 \pmod{7}. \end{split}$$

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system

Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 (mod 7) = 13 (mod 7).

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$

Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 $(mod 7) = 13 \pmod{7}$. But ok, if you really want.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1;

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.
Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $2 \cdot 4x = 2 \cdot 5 \pmod{7}$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

```
Can solve 4x = 5 \pmod{7}.

2 \cdot 4x = 2 \cdot 5 \pmod{7}

8x = 10 \pmod{7}
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

```
Can solve 4x = 5 \pmod{7}.

2 \cdot 4x = 2 \cdot 5 \pmod{7}

8x = 10 \pmod{7}

x = 3 \pmod{7}
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

```
Can solve 4x = 5 \pmod{7}.

2 \cdot 4x = 2 \cdot 5 \pmod{7}

8x = 10 \pmod{7}

x = 3 \pmod{7}

Check!
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

```
Can solve 4x = 5 \pmod{7}.

2 \cdot 4x = 2 \cdot 5 \pmod{7}

8x = 10 \pmod{7}

x = 3 \pmod{7}

Check! 4(3) = 12 = 5 \pmod{7}.
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \implies 8k - 12l is a multiple of four for any l and k \implies

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \implies 8k - 12l is a multiple of four for any l and k \implies 8k \neq 1 (mod 12) for any k.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, \dots, m-1\}$, $a \neq b$,

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k. acd(x,m) = 1

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

 \implies Prime factorization of *m* and *x* do not contain common primes.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

gcd(x,m) = 1

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in *m*'s factorization.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, \dots, m-1\}$, $a \neq b$, where

$$(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$$

Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, \dots, m-1\}$, $a \neq b$, where

$$(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$$

Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $\exists a, b \in \{0, \dots, m-1\}$, $a \neq b$, where

$$(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$$

Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Planar Coloring.

Planar Coloring. Induction.

Planar Coloring. Induction. Recoloring again.

Planar Coloring. Induction. Recoloring again.

Hypercubes.

Planar Coloring. Induction. Recoloring again.

Hypercubes.

Modular Arithmetic.

Planar Coloring. Induction. Recoloring again.

Hypercubes.

Modular Arithmetic. Another form of arithmetic.

Planar Coloring. Induction. Recoloring again.

Hypercubes.

Modular Arithmetic. Another form of arithmetic. Multiplicative inverses.

Planar Coloring. Induction. Recoloring again.

Hypercubes.

Modular Arithmetic. Another form of arithmetic. Multiplicative inverses.

Have a good week!