Modular Arithmetic

Inverses. Euclid's Algorithm

Inverses and Factors.

Division: multiply by multiplicative inverse.

 $2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $\underline{x} = 4\underline{x} = (\mod 7)$. $\underline{x} = 4\underline{x} = (\mod 7)$. $\underline{x} = 3 \pmod{7}$ no multiplicative inverse! $x = 3 \pmod{7}$ CHERRY $\underline{x} = 3 \pmod{7}$. $\underline{x} = 3 \pmod{7}$

Modular Arithmetic: refresher.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}"
if and only if (x - y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y + km for some integer k.
Mod 7 equivalence classes:
\{..., -7, 0, 7, 14, ...\} \ \{..., -6, 1, 8, 15, ...\} ...
Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y.
Can calculate with representative in \{0, ..., m - 1\}.
Example: 365 \equiv 1 \pmod{7}.
Next year its 1 day later!
```

Greatest Common Divisor and Inverses.

Thm:

If **greatest common divisor** of *x* and *m*, gcd(x, m), is 1, then *x* has a multiplicative inverse modulo *m*.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of m numbers in S correspond todifferent one of m equivalence classes modulo m. \implies One must correspond to 1 modulo m.

If not distinct, then $\exists a, b \in \{0, ..., m-1\}, a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \Rightarrow $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Notation

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system. $a \equiv b \pmod{m}$. Says two integers a and b are equivalent modulo m. Modulus is m $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 $(mod 7) = 13 \pmod{7}$. But ok, if you really want.

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo *m*.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

... For x = 4 and m = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6) $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct, Common factor 2.

For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. x = 15 = 3 (mod 6)

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd. $4x = 2 \pmod{6}$ Two solutions! $x = 2,5 \pmod{6}$

Very different for elements with inverses.

Proof Review 2: Bijections.	Finding inverses.	Inverses
If $gcd(x,m) = 1$. Then the function $f(a) = xa \mod m$ is a bijection. One to one: there is a unique inverse. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$. Oh yeah. $f(0) = 0$. Bijection \equiv unique inverse and same size. Proved unique inverse. x = 2, m = 4. f(1) = 2, f(2) = 0, f(3) = 2 Oh yeah. $f(0) = 0$. Not a bijection.	How to find the inverse? How to find if <i>x</i> has an inverse modulo <i>m</i> ? Find god (<i>x</i> , <i>m</i>). Greater than 1? No multiplicative inverse. Equal to 1? Mutliplicative inverse. Algorithm: Try all numbers up to <i>x</i> to see if it divides both <i>x</i> and <i>m</i> . Very slow.	Next up. Euclid's Algorithm. Runtime. Euclid's Extended Algorithm.
Refresh	Divisibility	More divisibility
Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from $0 + 8k$ for any $k \in \mathbb{N}$. Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$. Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from $0 + 9k$ for any $k \in \mathbb{N}$. 3 = gcd(6,9)! x has an inverse modulo <i>m</i> if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes. Now what?: Compute gcd! Compute Inverse modulo <i>m</i> .	Notation: $d x$ means " d divides x " or x = kd for some integer k . Fact: If $d x$ and $d y$ then $d (x + y)$ and $d (x - y)$. Is it a fact? Yes? No? Proof: $d x$ and $d y$ or $x = \ell d$ and $y = kd$ $\Rightarrow x - y = kd - \ell d = (k - \ell)d \Rightarrow d (x - y)$	Notation: $d x$ means "d divides x" or $x = kd$ for some integer k.Lemma 1: If $d x$ and $d y$ then $d y$ and $d \mod(x, y)$.Proof: $mod(x,y) = x - \lfloor x/y \rfloor \cdot y$ $= x - \lfloor s \rfloor \cdot y$ for integer s $= kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$ $= (k - s\ell)d$ Therefore $d \mod(x,y)$. And $d y$ since it is in condition.Lemma 2: If $d y$ and $d \mod(x,y)$ then $d y$ and $d x$. Proof: Similar. Try this at home.GCD Mod Corollary: $gcd(x, y) = gcd(y, \mod(x, y))$. Proof: x and y have same set of common divisors as x and $mod(x, y)$ by Lemma. Same common divisors \Longrightarrow largest is the same.

Euclid's algorithm. Euclid procedure is fast. Excursion: Value and Size. **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)). Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x Before discussing running time of gcd procedure... What is the value of 1,000,000? **Theorem:** (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. (define (euclid x y) one million or 1,000,000! Is this good? Better than trying all numbers in $\{2, \dots, \gamma/2\}$? (if (= y 0) х What is the "size" of 1,000,000? Check 2, check 3, check 4, check 5 ..., check y/2. (euclid y (mod x y)))) *** Number of digits: 7. If $y \approx x$ roughly y uses n bits ... **Theorem:** (euclid x y) = gcd(x, y) if $x \ge y$. 2ⁿ⁻¹ divisions! Exponential dependence on size! Number of bits: 21. 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! Proof: Use Strong Induction. For a number x, what is its size in bits? **Base Case:** y = 0, "*x* divides *y* and *x*" 2n is much faster! .. roughly 200 divisions. \implies "x is common divisor and clearly largest." $n = b(x) \approx \log_2 x$ **Induction Step:** mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(y, mod(x, y))which is gcd(x, y) by GCD Mod Corollary. Algorithms at work. Proof. (define (euclid x y) Trying everything (if (= y 0) Check 2, check 3, check 4, check 5 ..., check y/2. х (euclid y (mod x y)))) "(qcd x y)" at work. **Theorem:** (euclid x y) uses O(n) "divisions" where n = b(x). euclid(700,568) Proof: euclid(568, 132) euclid(132, 40) Fact: euclid(40, 12) First arg decreases by at least factor of two in two recursive calls. euclid(12, 4) Rreptof Eact: Benall abat five ago, narou decreases even under. euclid(4, 0) **Case 12** with station of the stati 4 Official and the second argument in next recursive call, Official argument in the next one. Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls. $mod(x,y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$ (The second is less than the first.)

Finding an inverse?

We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.

Extended GCD

Euclid's Extended GCD Theorem: For any x, y there are integers a, b such that ax + by = d where d = qcd(x, y).

"Make *d* out of sum of multiples of *x* and *y*."

What is multiplicative inverse of *x* modulo *m*?

By extended GCD theorem, when gcd(x, m) = 1.

ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}$!! Example: For x = 12 and y = 35, gcd(12,35) = 1.

(3)12 + (-1)35 = 1.

a = 3 and b = -1. The multiplicative inverse of 12 (mod 35) is 3.

Euclid's GCD algorithm.

Computes the gcd(x, y) in O(n) divisions. For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Make *d* out of *x* and *y*..?

gcd(35,12) gcd(12, 11) ;; gcd(12, 35%12) gcd(11, 1) ;; gcd(11, 12%11) gcd(1,0) 1

How did gcd get 11 from 35 and 12? $35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11$

How does gcd get 1 from 12 and 11? $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11. 1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1. Multiplicative Inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse. How do we **find** a multiplicative inverse?

Extended GCD Algorithm.

ext-gcd(x,y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a - floor(x/y) * b)

Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by. Example: $a - |x/y| \cdot d = 0$; 35 [22,11(-0)=13]

ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12

Extended GCD Algorithm.	Correctness.	Review Proof: step.
<pre>ext-gcd(x,y) if y = 0 then return(x, 1, 0) else (d, a, b) := ext-gcd(y, mod(x,y)) return (d, b, a - floor(x/y) * b) Theorem: Returns (d, a, b), where $d = gcd(a, b)$ and $d = ax + by$.</pre>	Proof: Strong Induction. ¹ Base: ext-gcd(x,0) returns $(d = x, 1, 0)$ with $x = (1)x + (0)y$. Induction Step: Returns (d, A, B) with $d = Ax + By$ Ind hyp: ext-gcd(y, mod (x, y)) returns (d, a, b) with $d = ay + b(\mod (x, y))$ ext-gcd(x, y) calls ext-gcd(y, mod $(x, y))$ so $d = ay + b \cdot (\mod (x, y))$ $= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$ $= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$ And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$ so theorem holds!	ext-gcd(x,y) if y = 0 then return(x, 1, 0) else (d, a, b) := ext-gcd(y, mod(x,y)) return (d, b, a - floor(x/y) * b) Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$.
Wrap-up Conclusion: Can find multiplicative inverses in <i>O</i> (<i>n</i>) time! Very different from elementary school: try 1, try 2, try 3	¹ Assume <i>d</i> is $gcd(x, y)$ by previous proof. Example: $p = 7, q = 11$. N = 77. (p-1)(q-1) = 60 Choose $e = 7$, since $gcd(7, 60) = 1$. egcd(7, 60).	
$2^{n/2}$ Inverse of 500,000,357 modulo 1,000,000,000,000? \leq 80 divisions. versus 1,000,000 Internet Security. Public Key Cryptography: 512 digits. 512 divisions vs. (1000000000000000000000000000000000000	7(0)+60(1) = 60 7(1)+60(0) = 7 7(-8)+60(1) = 4 7(9)+60(-1) = 3 7(-17)+60(2) = 1	
Internet Security: Next Week!	Confirm: $-119 + 120 = 1$ $d = e^{-1} = -17 = 43 = \pmod{60}$	