Modular Arithmetic

Inverses.
Euclid’s Algorithm

Modular Arithmetic: refresher.

x is congruent to y modulo mor “x =y (mod m)”
if and only if (x — y) is divisible by m.

...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:
{...,-7,0,7,14,...} {...,-6,1,8,15,...} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y.

Can calculate with representative in {0,...,m—1}.
Example: 365=1 (mod 7).
Next year its 1 day later!

Notation

x (mod m) or mod (x,m)
- remainder of x divided by min {0,...,m—1}.

mod (x,m) =x—[%|m
| %] is quotient.
mod (29,12) =29 — (|33])x 12=29 - (2) x 12=X =5

Work in this system.
a=b (mod m).
Says two integers a and b are equivalent modulo m.

Modulus is m
6=3+3=3+10 (mod 7).
6=3+3=3+10 (mod 7).

Generally, not 6 (mod 7) =13 (mod 7).
But ok, if you really want.

Inverses and Factors.

Division: multiply by multiplicative inverse.

2X =3 = (%)»2)(:(%)»3 g x:g.

Multiplicative inverse of x is y where xy =1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.
Multiplicative inverse of x mod mis y with xy =1 (mod m).
For 4 modulo 7 inverseis2: 2-4=8=1 (mod 7).

Can solve 4x =5 (mod 7).

# 43 4pog {hodGheck! 4(3) =12=5 (mod 7).

ﬁ&ﬁgmoﬂid}ﬁﬁ@). no multiplicative inverse!

x =3 (mo

&@Béqmchgf:% d7).

8k —12¢ 1s a multiple of four for any ¢ and k —
8k #1 (mod 12) for any k.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —>: The set S={0x,1x,...,(m—1)x} contains
y =1 mod mif all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.
= One must correspond to 1 modulo m.

If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x=0 (mod m)
Or (a— b)x = km for some integer k.

ged(x,m)=1
— Prime factorization of m and x do not contain common primes.
—> (a—b) factorization contains all primes in m’s factorization.
So (a— b) has to be multiple of m.
= (a—b)>m. Buta,be {0,..m—1}. Contradiction.

Proof review. Consequence.

Thm: If ged(x,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod mif all distinct modulo m.

i:.;)r x =4 and m= 6. All products of 4...
S=1{0(4),1(4),2(4),3(4),4(4),5(4)} = {0,4,8,12,16,20}
reducing (mod 6)
5=1{0,4,2,0,4,2}
Not distinct. Common factor 2.
For x =5and m=6.
S=1{0(5),1(5),2(5),3(5),4(5),5(5)} = {0,5,4,3,2,1}
All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).
5x =3 (mod 6) What is x? Multiply both sides by 5.
x=15=3 (mod 6)
4x =3 (mod 6) No solutions. Can'’t get an odd.
4x =2 (mod 6) Two solutions! x =2,5 (mod 6)

Very different for elements with inverses.




Proof Review 2: Bijections.

If ged(x,m) = 1.

Then the function f(a) = xa mod mis a bijection.

One to one: there is a unique inverse.

Onto: the sizes of the domain and co-domain are the same.
x=3,m=4.

f(1)=3(1) =3 (mod 4),7(2) =6 =2 (mod 4),f(3) =1 (mod 3).

Oh yeah. f(0) =0.

Bijection = unique inverse and same size.
Proved unique inverse.

Finding inverses.

How to find the inverse?
How to find if x has an inverse modulo m?

Find ged (x, m).
Greater than 1? No multiplicative inverse.
Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Inverses

Next up.

Euclid’s Algorithm.
Runtime.
Euclid’s Extended Algorithm.

x=2,m=4. Very slow.
f(1)=2,f(2)=0,f(3) =2
Oh yeah. f(0) =0.
Not a bijection.
Refresh Divisibility... More divisibility

Does 2 have an inverse mod 8? No.
Any multiple of 2 is 2 away from 0+ 8k for any k € N.

Does 2 have an inverse mod 97 Yes. 5
2(5)=10=1 mod?9.

Does 6 have an inverse mod 9?7 No.
Any multiple of 6 is 3 away from 0+ 9k for any k € N.
3 =gcd(6,9)!
x has an inverse modulo m if and only if
ged(x,m) >1? No.
ged(x,m) =17 Yes.
Now what?:
Compute gcd!
Compute Inverse modulo m.

Notation: d|x means “d divides x” or
x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x — ).
Is it a fact? Yes? No?

Proof: d|x and d|y or
x=/(dand y = kd

= xX—y=kd—td=(k—{)d = d|(x—y)

Notation: d|x means “d divides x” or
X = kd for some integer k.
Lemma 1: If d|x and d|y then d|y and d| mod (x,y).
Proof:
mod (x,y) = x—|x/y|-y

= x—|s]-y forintegers
= kd—std forintegers k,¢ where x = kd and y = (d
= (k—st)d

Therefore d| mod (x,y). And d|y since it is in condition. O

Lemma 2: If d|y and d| mod (x,y) then d|y and d|x.

Proof...: Similar. Try this at home. Olish.

GCD Mod Corollary: gcd(x,y) = gcd(y, mod (x,y)).

Proof: x and y have same set of common divisors as x and

mod (x,y) by Lemma.

Same common divisors = largest is the same. O




Euclid’s algorithm.

GCD Mod Corollary: gcd(x,y) = gcd(y, mod (x,)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's ged(x,0)? X

(define (euclid x vy)
(if (= y 0)
X
(euclid y (mod x y)))) xx%=

Theorem: (euclid x y) = gcd(x,y) if x > y.

Proof: Use Strong Induction.
Base Case: y =0, “x divides y and x”

= “x is common divisor and clearly largest.”
Induction Step: mod (x,y) <y <xwhenx >y

callin line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes ged(y, mod (x,y))

which is ged(x, y) by GCD Mod Corollary.

Excursion: Value and Size.

Before discussing running time of gcd procedure...
What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x, what is its size in bits?

n=b(x) ~log, x

Euclid procedure is fast.

Theorem: (euclid x y) uses 2n "divisions” where n = b(x) ~ log, x.
Is this good? Better than trying all numbers in {2,...y/2}?
Check 2, check 3, check 4, check 5 ..., check y/2.

If y = x roughly y uses n bits ...
21 divisions! Exponential dependence on size!

101 bit number. 2190 ~ 1030 = “million, trillion, trillion” divisions!

2nis much faster! .. roughly 200 divisions.

Algorithms at work.

Trying everything
Check 2, check 3, check 4, check 5 ..., check y/2.
“(gcd x y)” at work.

euclid (700,568)
euclid (568, 132)
euclid (132, 40)
euclid (40, 12)
euclid (12, 4)
euclid (4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Proof.

(define (euclid x y)
(if (=y 0)
X
(euclid y (mod x y))))

Theorem: (euclid x y) uses O(n) "divisions” where n= b(x).
Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.
Rreebaidact: Beaplidbatdive! caosiraegl freneases evenuater.
@E@W@%Wﬂ@%@ﬁﬂs‘%od(ny) <x/2”

ﬁ%ﬁgm@gﬁ%ﬁn next recursive call,
and becomes the first grguraent in the next one.
y

X

mod (x,y)=x—y|=|=x—y<x—x/2=x/2

<




Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.

Euclid’s GCD algorithm.

(define (euclid x y)
(if (= y 0)
X
(euclid vy (mod x y))))

Computes the ged(x, y) in O(n) divisions.

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
How do we find a multiplicative inverse?

Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers
a, b such that
ax+by=d whered=gcd(x,y).
“Make d out of sum of multiples of x and y.”
What is multiplicative inverse of x modulo m?
By extended GCD theorem, when ged(x, m) = 1.

ax +bm=1
ax=1-bm=1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x =12 and y =35, gcd(12,35) = 1.

(3)12+(-1)35=1.

a=3and b=-1.
The multiplicative inverse of 12 (mod 35) is 3.

Make d out of x and y..?

gcd (35,12)
gcd (12, 11) ;7 gcd(l2, 35%12)
gcd (11, 1) ;7 gcd(ll, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 127
35— 35]12=35-(2)12=11

How does gcd get 1 from 12 and 11?
12— [F]11=12-(1)11=1

Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1=12—(1)11=12—-(1)(835—(2)12) = (3)12+(—1)35

Get 11 from 35 and 12 and plugin.... Simplify. a=3and b= —1.

Extended GCD Algorithm.

ext-gcd (x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * D)

Claim: Returns (d,a,b): d = gcd(a,b) and d = ax + by.
Example: a— | x/y]-H=0135122]1(-0 =331

ext—-gcd (35,12)
ext—-gcd (12, 11)
ext—-gcd (11, 1)
ext-gcd(1,0)
return (1,1,0) ;;
return (1,0,1) i
return (1,1,-1) H
return (1,-1, 3) HH

(1)1 + (0) O
(0)11 + (1)1
(1)12 + (-1)11
(-1)35 +(3)12

e
Il




Extended GCD Algorithm.

ext—-gcd(x,y)
if vy = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Theorem: Returns (d, a, b), where d = gcd(a, b) and

d=ax+by.

Correctness.

Proof: Strong Induction.’
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x +(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-gcd(y, mod (x,y)) returns (d, a, b) with
d=ay+b( mod(x,y))

ext-ged(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x.y))
X
= ay+b-(x—|-
y+b-(x= 1 1y)

- bx+(a—L§j»b)y

And ext-gcd returns (d, b,(a— | 7] - b)) so theorem holds! O

TAssume d is gcd(x, y) by previous proof.

Review Proof: step.

ext-gcd(x,Vy)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor (x/y) * b)

Recursively: d = ay+b(x — |
Returns (d,b,(a— (7] -b)).

%J.y) = d=bx—(a[£lb)y

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...
on/2

Inverse of 500,000,357 modulo 1,000,000,000,0007?

< 80 divisions.
versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(10000000000000000000000000000000000000000000)° divisions.

Internet Security: Next Week!

Example: p=7, g=11.
N=77.

(p—1)(g-1)=60
Choose e =7, since gcd(7,60) = 1.

egcd(7,60).
7(0)+60(1) = 60
7(1)+60(0) = 7
7(-8)+60(1) = 4
7(9)+60(-1) = 3
7(-17)+60(2) = 1

Confirm: —119+4+120 =1
d=e"'=-17=43= (mod 60)




