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Modular Arithmetic: refresher.

x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.

...or x and y have the same remainder w.r.t. m.

...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

Can calculate with representative in {0, . . . ,m−1}.
Example: 365≡ 1 (mod 7).

Next year its 1 day later!
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Notation

x (mod m) or mod (x ,m)

- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.
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Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).

2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .
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Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.
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Proof review. Consequence.
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Proof Review 2: Bijections.

If gcd(x,m) = 1.

Then the function f (a) = xa mod m is a bijection.
One to one: there is a unique inverse.
Onto: the sizes of the domain and co-domain are the same.

x = 3,m = 4.
f (1) = 3(1) = 3 (mod 4), f (2) = 6 = 2 (mod 4), f (3) = 1 (mod 3).
Oh yeah. f (0) = 0.

Bijection ≡ unique inverse and same size.
Proved unique inverse.

x = 2,m = 4.
f (1) = 2, f (2) = 0, f (3) = 2

Oh yeah. f (0) = 0.

Not a bijection.
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Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x ,m).
Greater than 1? No multiplicative inverse.
Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.
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Refresh

Does 2 have an inverse mod 8?

No.
Any multiple of 2 is 2 away from 0+8k for any k ∈ N.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.
Any multiple of 6 is 3 away from 0+9k for any k ∈ N.

3 = gcd(6,9)!

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Now what?:
Compute gcd!
Compute Inverse modulo m.
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Divisibility...

Notation: d |x means “d divides x” or

x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).

Is it a fact? Yes? No?

Proof: d |x and d |y or
x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)
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More divisibility

Notation: d |x means “d divides x” or

x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).

Proof:
mod (x ,y) = x−bx/yc ·y

= x−bsc ·y for integer s
= kd −s`d for integers k , ` where x = kd and y = `d
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. ish.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.
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Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

Hey, what’s gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What’s gcd(x ,0)? x

(define (euclid x y)
(if (= y 0)
x
(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x ,y) if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.
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Euclid procedure is fast.

Theorem: (euclid x y) uses 2n ”divisions” where n = b(x)≈ log2 x .

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

If y ≈ x roughly y uses n bits ...
2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.
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Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“(gcd x y)” at work.
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euclid(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)
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Proof.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Theorem: (euclid x y) uses O(n) ”divisions” where n = b(x).

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y ≥ x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y ≥ x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2
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Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by

= d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.
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Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example:

a−bx/yc ·b =

1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12
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return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .
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Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d ,a,b) with

d = ay +b( mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = ay +b · ( mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.
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Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y

Returns (d ,b,(a−b x
y c ·b)).
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Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(10000000000000000000000000000000000000000000)5 divisions.

Internet Security: Next Week!
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Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)
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